首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temporal relationships between concentrations of sex steroid-binding protein (SBP), corticosteroid-binding globulin (CBG), total and free estradiol, total and free testosterone, cortisol, and progesterone were studied in plasma obtained at 1- to 3-day intervals throughout gestation in six rhesus macaques. Concentrations of SBP and CBG were measured by diethylaminoethyl cellulose filter assays. Total and free steroids were estimated by radioimmunoassay and ultrafiltration dialysis, respectively. We found that SBP was elevated between days 30 and 50 and CBG between days 60 and 140; both then declined until term (167 days). Estradiol increased gradually throughout gestation. Testosterone was elevated between days 10 and 40, then declined, and rose slightly in late gestation until approximately 15 days before delivery, when it increased markedly. Free estradiol and testosterone increased dramatically before parturition. Progesterone was elevated between days 25 and 45 and declined to relatively constant levels thereafter. Cortisol was essentially unchanged throughout gestation. Our data show that in the pregnant rhesus, levels of SBP and CBG vary independently of one another, but both decline before term; concentrations of both total and free estradiol and testosterone increase markedly before parturition; in late gestation, elevated estrogen is not associated with increased levels of SBP or CBG (as it is in human females).  相似文献   

2.
The maternal metabolic clearance rate (MCR) and the binding of cortisol in the plasma of fetus and mother were estimated 8 days before term in conscious pregnant guinea-pigs, control or subjected to a neurotrophic stress (they were immobilized for 3 h in a dark room in front of an intermittent luminous flash). The maternal MCR of cortisol dropped during pregnancy related to an increase in corticosteroid binding globulin (CBG) and the stress mimicked these changes with a decrease in MCR and a rise in CBG. The increase in cortisol concentrations occurring in the fetal plasma after maternal stress could be related to the increase in free cortisol in the stressed mother. Nevertheless, although the fetal CBG did not rise after maternal stress, the increase in free cortisol in the fetal plasma remained moderate, due to the numerous free sites of CBG and albumin for cortisol.  相似文献   

3.
The rise in cortisol in fetal sheep during late pregnancy has been related to increased responsiveness of the adrenal to ACTH. Most reports have suggested that plasma ACTH concentrations rise coincident with or after the prepartum increase in cortisol. To reexamine the relationship of cortisol with basal immunoreactive ACTH (IR-ACTH) throughout the last 40 days of pregnancy and to determine changes in fetal pituitary responsiveness during this time, we measured basal and synthetic ovine corticotrophin-releasing factor (oCRF) (10 ng-10 micrograms) induced rises in ACTH and cortisol in fetal sheep at days 110-115, 125-130, and 135-140 of pregnancy. The fetuses were catheterized on day 105-120 and entered spontaneous labour at greater than 140 days. Basal IR-ACTH (picograms per millilitre +/- SEM) rose from 16.7 +/- 2.9 pg/mL at day 110-115 to 34.8 +/- 8.7 pg/mL at day 141-145. There was a significant effect of time on basal ACTH concentrations with a mean increase of approximately 5 pg ACTH per millilitre of plasma per 5-day sampling interval. Plasma cortisol changed gradually between day 110 and 125 of gestation and then more rapidly to term. At day 110-115 of gestation there was no significant change in plasma ACTH after 10 or 100 ng oCRF, but there was a significant increase in ACTH after 1 microgram of oCRF. Plasma cortisol did not change after any CRF injection. The change in IR-ACTH after oCRF at day 125-130 of gestation was significantly greater than that at day 110-115. Plasma cortisol concentrations were elevated following 1- and 10-micrograms injections of oCRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The cDNA-deduced primary structure of rabbit corticosteroid-binding globulin (CBG) contains 383 amino acids (mol wt, 42,326), including three cysteine residues and four sites for N-glycosylation. It is primarily the product of a 1.68-kilobase hepatic mRNA, but small amounts of CBG mRNA were also found in maternal lung, spleen, and ovary and fetal kidney. In the fetus, hepatic CBG mRNA concentrations increase markedly after day 11 and were 2- to 5-fold higher than those in maternal liver during days 17-23. They then declined to very low levels at term (31 days). By contrast, maternal hepatic CBG mRNA levels did not increase until day 23; reached a peak at about day 27, and then declined to prepregnancy values by 3 days after delivery. In general, fetal and maternal hepatic CBG mRNA concentrations reflect the corresponding serum CBG levels. Our data, therefore, indicate that the marked changes in fetal and maternal plasma CBG levels during pregnancy reflect changes in the biosynthesis of the protein rather than alterations in compartmentalization or clearance.  相似文献   

5.
6.
The binding of methadone to maternal and fetal plasma proteins was determined throughout the third trimester in the pregnant ewe. Blood was sampled from chronic indwelling catheters placed in the maternal aorta and fetal aorta. Methadone binding was determined by use of equilibrium dialysis with (3H)-methadone. Maternal binding ranged from 50.4 to 89.5%, with a mean of 76.2 ±1.3 (SE)%. Fetal binding was initially significantly lower than maternal binding, but increased rapidly in the last two weeks before parturition. Prior to 130 days gestation, the ratio of fetal binding to maternal binding was 0.40 ± 0.03. This binding ratio increased to 0.82 ± 0.08 in the last few days of pregnancy. Preliminary results suggested that maternal binding was higher in the early post-partum period. These results demonstrate that the relationship between maternal and fetal plasma binding of methadone changes rapidly towards the end of pregnancy, and fetal binding approaches maternal binding at parturition.  相似文献   

7.
Biologically active peptides have been identified in the adrenal glands of several adult mammalian species. Some of these peptides appear to modulate the nicotine-induced catecholamine release from the adrenal medulla. The present study was carried out to investigate the presence and ontogeny of the peptides substance P, met-enkephalin and leu-enkephalin in the ovine fetal adrenal gland from 70 to 140 days gestation (term = 145-150 days). Concurrently, the growth of the fetal adrenal as well as the gestational changes in catecholamine content were determined. The maternal adrenal glands were also studied for comparison. The ovine fetal adrenal gland increased in weight with advancing gestation at a single exponential rate. Total adrenal substance P content correlated with gestational age, while met-enkephalin, leu-enkephalin and total catecholamine contents correlated with adrenal weight. The adrenal content (normalized as per unit protein) of substance P was highest in the young fetuses at 70 days gestation, decreased progressively towards term and, in the adult levels were significantly lower than those measured in the fetuses. The contents of met-enkephalin and leu-enkephalin were low in the young fetuses at 70 days gestation, but reached high levels at 130 to 140 days gestation. Maternal adrenal contents of the two enkephalins were significantly lower than those measured in the near-term fetal adrenal. Total catecholamine content in the fetal adrenal medulla increased as the fetus matured. Norpinephrine was the primary catecholamine present in the medulla of fetuses at 70 and 80 days gestation, while epinephrine was the major one in the adult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This study examined the effects of dexamethasone treatment on basal hypothalamo-pituitary-adrenal (HPA) axis function and HPA responses to subsequent acute hypoxemia in the ovine fetus during late gestation. Between 117 and 120 days (term: approximately 145 days), 12 fetal sheep and their mothers were catheterized under halothane anesthesia. From 124 days, 6 fetuses were continuously infused intravenously with dexamethasone (1.80 +/- 0.15 microg.kg(-1).h(-1) in 0.9% saline at 0.5 ml/h) for 48 h, while the remaining 6 fetuses received saline at the same rate. Two days after infusion, when dexamethasone had cleared from the fetal circulation, acute hypoxemia was induced in both groups for 1 h by reducing the maternal fraction of inspired O2. Fetal dexamethasone treatment transiently lowered fetal basal plasma cortisol, but not ACTH, concentrations. However, 2 days after treatment, fetal basal plasma cortisol concentration was elevated without changes in basal ACTH concentration. Despite elevated basal plasma cortisol concentration, the ACTH response to acute hypoxemia was enhanced, and the increment in plasma cortisol levels was maintained, in dexamethasone-treated fetuses. Correlation of fetal plasma ACTH and cortisol concentrations indicated enhanced cortisol output without a change in adrenocortical sensitivity. The enhancements in basal cortisol concentration and the HPA axis responses to acute hypoxemia after dexamethasone treatment were associated with reductions in pituitary and adrenal glucocorticoid receptor mRNA contents, which persisted at 3-4 days after the end of treatment. These data show that prenatal glucocorticoids alter the basal set point of the HPA axis and enhance HPA axis responses to acute stress in the ovine fetus during late gestation.  相似文献   

9.
The objective of this study was to investigate the effects of maternal protein or energy restriction on hormonal and metabolic status of pregnant goats during late gestation and their postnatal male kids. Forty-five pregnant goats were fed a control (CON), 40% protein-restricted (PR) or 40% energy-restricted (ER) diet from 90 days of gestation until parturition. Plasma of mothers (90, 125 and 145 days of gestation) and kids (6 weeks of age) were sampled to determine metabolites and hormones. Glucose concentration for pregnant goats subjected to PR or ER was less (P<0.001) than that of CON goats at 125 and 145 days of gestation. However, plasma nonesterified fatty acids concentration was greater (P<0.01) at 125 and 145 days for PR and ER than CON. Protein restriction increased (P<0.01) maternal cortisol concentration by 145 days of gestation, and ER decreased (P<0.01) maternal insulin concentration at 125 days of gestation. Moreover, maternal amino acid (AA) concentrations were affected by nutritional restriction, with greater (P<0.05) total AA (TAA) and nonessential AA (NEAA) for PR goats but less (P<0.05) TAA and NEAA for ER goats at 125 days of gestation. After 6 weeks of nutritional recovery, plasma concentrations of most metabolic and hormonal parameters in restricted kids were similar to CON kids, except for reduced (P<0.05) insulin concentration in ER, and reduced (P<0.05) Asp concentration in PR and ER kids. These results provide information on potential metabolic mechanisms responsible for fetal programming.  相似文献   

10.
Metabolic and hormonal responses to cooling the fetal sheep in utero   总被引:2,自引:0,他引:2  
The metabolic and hormonal effects of cooling 10 fetal sheep in utero (115-142 days of gestation) for 2h were studied. The fetal core temperature fell by 2.81 +/- 0.14 degrees C while the maternal temperature fell 0.86 +/- 0.15 degrees C. This hypothermia caused a significant rise in the fetal and maternal plasma glucose concentrations (P less than 0.001) and a fall in the fetal insulin concentrations (P less than 0.01). The fetal plasma lactate and cortisol concentrations rose rapidly (P less than 0.01) while the growth hormone fell (P less than 0.01) and remained low until cooling ceased when a rapid rebound occurred. There was no significant change in any of the fetal iodothyronines and no elevation of nonesterified free fatty acid concentrations, in contrast to the rapid rise (P less than 0.01) which occurred when newborn lambs were cooled. These observations demonstrate that appropriate glucose, insulin, lactate and cortisol responses to hypothermia have differentiated by 120 days of gestation. However, neither a thyroid hormone response nor an elevation in free fatty acid levels was observed. Thus not all components of the thermogenic response to hypothermia can be demonstrated in the late gestation fetail sheep in utero.  相似文献   

11.
The status of the corticosteroid-binding globulin (CBG) at the fetomaternal interface, especially in the maternal intervillous blood space (I), was investigated and compared to that of CBG in the maternal (M) and fetal (umbilical arteries [A] and vein [V]) peripheral circulations at term. Immunoquantitation of plasma CBG showed that the CBG concentration in I was 30% less than that in M (P < 0.001) and threefold higher than that in umbilical cord blood (P < 0.001). The microheterogeneity of CBG studied by immunoaffinoelectrophoresis in the presence of concanavalin A and Western blotting indicated that the CBG in I was mainly of maternal origin and different from fetal CBG. A CBG mRNA, but no classic 50- to 59-kDa CBG, was found in isolated term trophoblastic cells. The steroid environment of the CBG in I differed greatly from that in the peripheral maternal and fetal circulations, because the progesterone:cortisol molar ratio in I was 75-fold higher than that in M and 7- to 10-fold higher than that in the fetal circulation. Binding studies revealed that the affinity constants of CBG for cortisol in I, A, and V were significantly lower than that in M plasma (P < 0.02) in their respective hormonal contexts. The binding parameters for I-CBG stripped of endogenous steroids and lipids were close to those for M-CBG but different from those of fetal CBG (P < 0.001). These data reflect the physiological relevance of the CBG-steroid interaction, especially with very CBG-loaded progesterone at the fetomaternal interface during late pregnancy.  相似文献   

12.
In fetal sheep the prepartum increase in plasma cortisol concentration is associated with an increase in high affinity corticosteroid binding activity in plasma. This appears to reflect an increase in corticosteroid-binding globulin (CBG) biosynthesis from the fetal liver, and evidence is presented that hepatic CBG gene expression is increased by exposure to glucocorticoids in the fetus. Immunoreactive CBG is found in other fetal tissues, and CBG mRNA is present in fetal pituitary. CBG reduces the ability of cortisol to exert negative feedback on basal or CRH-stimulated ACTH output by fetal sheep pituitary cells in culture. We suggest that CBG interacts with cortisol in a manner that maintains a low negative feedback on the pituitary, and perhaps hypothalamus. This constitutes a component of the cascade of events that is associated with hypothalamic-pituitary-adrenal activation in the late gestation fetus, and with the onset of parturition.  相似文献   

13.
BACKGROUND: In pregnant primates, the effect of post-prandial hyperglycemic or insulinemic states on leptin production is not known. Our goal was to conduct a controlled study using an established pregnant baboon model ( PAPIO ANUBIS) to determine whether acute glucose changes would have an effect on maternal or fetal plasma leptin levels. METHODS: Two animals were operated on at 138 and 140 days of gestation (term approximately 184 days) by placing 4 cannulae in the maternal aorta, inferior vena cava, fetal carotid artery, and the amniotic cavity. At 145 and 150 days, glucose infusions were started via the maternal femoral vein. Animal 1 received 7.5 gm of glucose over a 2-hour period at 145th day. Animal 2 received 20 gm of glucose over a 1-hour period at 150th day. Both animals remained AD LIBITUM throughout the experiments. Maternal and fetal blood samples were obtained from the arterial lines before the glucose infusion and at half hour intervals to include 30 minutes post-infusion. RESULTS: Significant changes from baseline concentrations were observed for maternal and fetal glucose and insulin concentrations in response to both glucose challenges. Maternal and fetal plasma leptin concentrations did not correlate with glucose or insulin changes. CONCLUSION: This preliminary study demonstrated that in primates, acute changes in circulating maternal or fetal glucose or insulin concentration do not affect maternal or fetal plasma leptin concentrations. These results suggest that alterations in leptin secretion by the maternal-placental-fetal unit may only occur in pathological states.  相似文献   

14.
15.
We investigated whether leptin can suppress the prepartum activation of the fetal hypothalamus-pituitary-adrenal (HPA) axis and delay the timing of parturition in the sheep. First, we investigated the effects of a 4-day intravascular infusion of recombinant ovine leptin (n = 7) or saline (n = 6) on fetal plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations, starting from 136 days gestation (i.e., at the onset of the prepartum activation of the fetal HPA axis. The effects of a continuous intrafetal infusion of leptin (n = 7) or saline (n = 5) from 144 days gestation on fetal plasma ACTH and cortisol concentrations and the timing of delivery were also determined in a separate study. There was an increase in fetal plasma ACTH (P < 0.01) and cortisol (P < 0.001) concentrations when saline was infused between 136-137 and 140-141 days gestation. Plasma ACTH and cortisol concentrations did not rise, however, when leptin was infused during this period of gestation. When leptin was infused after 144 days gestation, there was no effect of a 4- to 5-fold increase in circulating leptin on fetal ACTH concentrations. In contrast, leptin infusion from 144 days gestation suppressed (P < 0.05) fetal plasma cortisol concentrations by around 40% between 90 and 42 h before delivery. There was no difference, however, in the length of gestation between the saline- and leptin-infused groups (saline infused, 150.2 +/- 0.5 days; leptin infused, 149.8 +/- 1.0 days). In saline-infused fetuses, there was a significant negative relationship between the plasma concentrations of cortisol (y) and leptin (x) between 138 and 146 days gestation (y = 81.4 - 7.7x, r = 0.38, P < 0.005). This study provides evidence for an endocrine negative feedback loop between leptin and the HPA axis in fetal life.  相似文献   

16.
Evidence from epidemiologic, clinical, and experimental studies has shown that a suboptimal intrauterine environment during early pregnancy can alter fetal growth and gestation length and is associated with an increased prevalence of adult hypertension and cardiovascular disease. It has been postulated that maternal nutrient restriction may act to reprogram the development of the pituitary-adrenal axis, resulting in excess glucocorticoid exposure and adverse health outcomes in later life. It is unknown, however, whether maternal nutrient restriction during the periconceptional period alters the development of the fetal pituitary-adrenal axis or whether the effects of periconceptional undernutrition can be reversed by the provision of an adequate level of maternal nutrition throughout the remainder of pregnancy. We have investigated the effect of restricted periconceptional nutrition (70% of control feed allowance) from 60 days before until 7 days after mating and the effect of restricted gestational nutrition from Day 8 to 147 of gestation on the development of the fetal hypothalamo-pituitary adrenal (HPA) axis in the sheep. In these studies, we have also investigated the effects of fetal number and sex on the pituitary-adrenal responses to periconceptional and gestational undernutrition. In ewes maintained on a control diet throughout the periconceptional and gestational periods, fetal plasma ACTH concentrations were higher and the prepartum surge in cortisol occurred earlier in singletons compared with twins. Plasma ACTH concentrations were also significantly higher in male compared with female singletons, and in twin fetuses, the prepartum surge in cortisol concentrations occurred earlier in males than in females. Periconceptional undernutrition resulted in higher fetal plasma concentrations of ACTH between 110 and 145 days of gestation and a significantly greater cortisol response to a bolus dose of corticotropin-releasing hormone in twin, but not singleton, fetuses in late gestation. We have therefore demonstrated that fetal number and sex each has an impact on the timing of the prepartum activation of the HPA axis in the sheep. Restriction of the level of maternal nutrition before and in the first week of a twin pregnancy results in stimulation of the fetal pituitary-adrenal axis in late gestation, and this effect is not reversed by the provision of a maintenance control diet from the second week of pregnancy.  相似文献   

17.
Mechanisms to regulate closely fetal GC exposure are of considerable importance, as certain organs (kidney, brain) are adversely affected by excess GCs. 11beta-Hydroxysteroid dehydrogenase type 2 (11beta-HSD2) reduces transplacental passage of maternal GCs to the fetus. We hypothesized that 11beta-HSD2, if active in fetal kidney and colon, might allow local tissue modulation of GC access during the critical last trimester. We determined the presence, ontogeny and functionality of 11beta-HSD in the placenta and fetal, neonatal and adult kidney and colon in rats and rabbits and the cortisol:cortisone ratio in human amniotic fluid, which represents fetal urine. There was clear a 11beta-HSD2 expression in last trimester fetal colon, kidney and placenta in both rats and rabbits. This appeared of functional importance, since the potency of cortisol on fetal rabbit colonic sodium flux in the Ussing chamber was increased by 11beta-HSD inhibition. In human amniotic fluid, we found a decreasing ratio of cortisol:cortisone across the last trimester, suggesting an analogous onset of renal 11beta-HSD2 activity in the human fetal kidney. Local fetal tissue 11beta-HSD2 may modulate exposure to the deleterious effects of GCs upon target tissue maturation during sensitive periods of late gestation when fetal GC levels rise to prepare other organs (lung) for adaptations at birth.  相似文献   

18.
Zinc, copper, and iron metabolism during porcine fetal development   总被引:2,自引:0,他引:2  
Zinc, copper, and iron levels in maternal and fetal pig tissues and fluids were measured starting on d 30 of gestation and continuing to term (d 114) at 10-d intervals. Fetal hematocrit increased from a low of 19% on d 30 to 32% by d 50, after which it remained above 30% to term. Amniotic fluid zinc, copper, and iron all reached maximal levels by d 60 of gestation. Maternal serum zinc levels fluctuated little during gestation, but fetal serum zinc concentration was significantly elevated above maternal levels during the second trimester. Fetal serum copper levels were significantly lower than maternal values throughout gestation and this was also the case for ceruloplasmin oxidase activity. Maternal serum iron reached its lowest level by d 80 of gestation when rate of transfer of iron to the developing fetuses was high. Fetal serum iron declined throughout gestation, reaching its lowest level on d 100. In general, fetal liver concentrations of zinc, copper, and iron were higher than the corresponding maternal values throughout gestation. Distinct increases were noted for fetal hepatic zinc and copper concentrations during the second trimester of pregnancy and these were accompanied by increases in cytosolic and metallothionein-bound zinc and copper levels. Maternal hepatic iron declined during the second trimester, reaching its lowest point on d 80, indicative of the shunting of maternal iron reserves to fetal tissues. Fetal kidney metal levels did not demonstrate any distinctive developmental patterns with respect to zinc, copper, or iron concentrations, but a general accumulation of each metal was observed as gestation progressed. The results of this study highlight some of the distinct changes occurring in the metabolism of zinc, copper, and iron in both maternal and fetal tissues and fluids during gestation in the pig. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other suitable products.  相似文献   

19.
C Y Cheung 《Peptides》1988,9(1):107-111
The present study was designed to investigate the presence of VIP in fetal adrenals, to determine the changes in adrenal VIP content associated with maturation, and to explore the factors which regulate fetal adrenal VIP release. Adrenal glands from ovine fetuses at 70 to 140 days gestation were used. Adrenal VIP content, as measured by radioimmunoassay, were low at 70 and 80 days of gestation. This was followed by a rapid increase in VIP content from 80 to 110 days reaching a plateau between 110 and 130 days at levels comparable to that in the adult. A significant fall in adrenal VIP content occurred at 140 days, immediately prior to term. Release of VIP from fetal adrenocortical cells in vitro was significantly elevated by angiotensin II at 10(-5) M, while ACTH had no effect. Acetylcholine at 50 microM and high potassium stimulated fetal adrenal VIP release while norepinephrine did not. These results suggest that the VIP neuronal system in the ovine fetal adrenal matures between 80 and 110 days of gestation. Furthermore, the release of VIP from the fetal adrenocortical cells may be regulated by angiotensin II and cholinergic neurotransmitters.  相似文献   

20.
Nitric oxide (NO), produced by NO synthase (NOS), plays a critical role in multiple processes in the lung during the perinatal period. To better understand the regulation of pulmonary NO production in the developing primate, we determined the cell specificity and developmental changes in NOS isoform expression and action in the lungs of third-trimester fetal baboons. Immunohistochemistry in lungs obtained at 175 days (d) of gestation (term = 185 d) revealed that all three NOS isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS), are primarily expressed in proximal airway epithelium. In proximal lung, there was a marked increase in total NOS enzymatic activity from 125 to 140 d gestation due to elevations in nNOS and eNOS, whereas iNOS expression and activity were minimal. Total NOS activity was constant from 140 to 175 d gestation, and during the latter stage (160-175 d gestation), a dramatic fall in nNOS and eNOS was replaced by a rise in iNOS. Studies done within 1 h of delivery at 125 or 140 d gestation revealed that the principal increase in NOS during the third trimester is associated with an elevation in exhaled NO levels, a decline in expiratory resistance, and greater pulmonary compliance. Thus, there are developmental increases in pulmonary NOS expression and NO production during the early third trimester in the primate that may enhance airway and parenchymal function in the immediate postnatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号