首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang T  Fang Y  Wang X  Deng X  Zhang X  Hu S  Yu J 《PloS one》2012,7(1):e30531
The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.  相似文献   

2.
Molecular characterization of a cloned dolphin mitochondrial genome   总被引:11,自引:0,他引:11  
Summary DNA clones have been isolated that span the complete mitochondrial (mt) genome of the dolphin,Cephalorhynchus commersonii. Hybridization experiments with purified primate mtDNA probes have established that there is close resemblance in the general organization of the dolphin mt genome and the terrestrial mammalian mt genomes. Sequences covering 2381 bp of the dolphin mt genome from the major noncoding region, three tRNA genes, and parts of the genes encoding cytochrome b, NADH dehydrogenase subunit 3 (ND3), and 16S rRNA have been compared with corresponding regions from other mammalian genomes. There is a general tendency throughout the sequenced regions for greater similarity between dolphin and bovine mt genomes than between dolphin and rodent or human mt genomes.  相似文献   

3.
Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure and organization. The genus Plasmodium, the causative agent of malaria, has the smallest mt genome in the form of a tandemly repeated, linear element of 6 kb. The Plasmodium mt genome encodes only three protein genes (cox1, cox3 and cob) and large- and small-subunit ribosomal RNA (rRNA) genes, which are highly fragmented with 19 identified rRNA pieces. The complete mt genome sequences of 21 Plasmodium species have been published but a thorough investigation of the arrangement of rRNA gene fragments has been undertaken for only Plasmodium falciparum, the human malaria parasite. In this study, we determined the arrangement of mt rRNA gene fragments in 23 Plasmodium species, including two newly determined mt genome sequences from P. gallinaceum and P. vinckei vinckei, as well as Leucocytozoon caulleryi, an outgroup of Plasmodium. Comparative analysis reveals complete conservation of the arrangement of rRNA gene fragments in the mt genomes of all the 23 Plasmodium species and L. caulleryi. Surveys for a new rRNA gene fragment using hidden Markov models enriched with recent mt genome sequences led us to suggest the mtR-26 sequence as a novel candidate LSU rRNA fragment in the mt genomes of the 24 species. Additionally, we found 22-25 bp-inverted repeat sequences, which may be involved in the generation of lineage-specific mt genome arrangements after divergence from a common ancestor of the genera Eimeria and Plasmodium/Leucocytozoon.  相似文献   

4.
5.
Since the endosymbiotic origin of chloroplasts from cyanobacteria 2 billion years ago, the evolution of plastids has been characterized by massive loss of genes. Most plants and algae depend on photosynthesis for energy and have retained ~110 genes in their chloroplast genome that encode components of the gene expression machinery and subunits of the photosystems. However, nonphotosynthetic parasitic plants have retained a reduced plastid genome, showing that plastids have other essential functions besides photosynthesis. We sequenced the complete plastid genome of the underground orchid, Rhizanthella gardneri. This remarkable parasitic subterranean orchid possesses the smallest organelle genome yet described in land plants. With only 20 proteins, 4 rRNAs, and 9 tRNAs encoded in 59,190 bp, it is the least gene-rich plastid genome known to date apart from the fragmented plastid genome of some dinoflagellates. Despite numerous differences, striking similarities with plastid genomes from unrelated parasitic plants identify a minimal set of protein-encoding and tRNA genes required to reside in plant plastids. This prime example of convergent evolution implies shared selective constraints on gene loss or transfer.  相似文献   

6.
Zbawicka M  Burzyński A  Wenne R 《Gene》2007,406(1-2):191-198
Marine mussels Mytilus possess two mitochondrial (mt) genomes, which undergo doubly uniparental inheritance (DUI). Female (F) and male (M) genomes are usually highly diverged at the sequence level. Both genomes contain the same set of metazoan genes (for 12 proteins, 2 rRNAs and 23 tRNAs), both lack the atp8 gene and have two tRNAs for methionine. However, recently recombination between those variants has been reported. Both original F and M mt genomes of M. trossulus were replaced by M. edulis mtDNA in the Baltic populations. Highly diverged M genome occurs rarely in the Baltic mussels. Full sequences of the M genome identified in males (sperm) and F genome in females (eggs) were obtained. Both genomes were diverged by 24% in nucleotide sequence, but had similar nucleotide composition and codon usage bias. Constant domain (CD) of the control region (CR), the tRNA and rRNA genes were the most conserved. The most diverged was the variable domain 1 (VD1) of the control region. The F genome was longer than M by 147 bp. and the main difference was localised in the VD1 region. No recombination was observed in whole mtDNA of both studied variants. Nuclear mitochondrial pseudogenes (numts) have not been found by hybridisation with probes complementary to several fragments of the Baltic M. trossulus mtDNA.  相似文献   

7.
Apicomplexan parasites of the genus Plasmodium, pathogens causing malaria, and the genera Babesia and Theileria, aetiological agents of piroplasmosis, are closely related. However, their mitochondrial (mt) genome structures are highly divergent: Plasmodium has a concatemer of 6-kb unit and Babesia/Theileria a monomer of 6.6- to 8.2-kb with terminal inverted repeats. Fragmentation of ribosomal RNA (rRNA) genes and gene arrangements are remarkably distinctive. To elucidate the evolutionary origin of this structural divergence, we determined the mt genome of Eimeria tenella, pathogens of coccidiosis in domestic fowls. Analysis revealed that E. tenella mt genome was concatemeric with similar protein-coding genes and rRNA gene fragments to Plasmodium. Copy number was 50-fold of the nuclear genome. Evolution of structural divergence in the apicomplexan mt genomes is discussed.  相似文献   

8.
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).  相似文献   

9.
Noguchi Y  Endo K  Tajima F  Ueshima R 《Genetics》2000,155(1):245-259
The complete nucleotide sequence of the 14,017-bp mitochondrial (mt) genome of the articulate brachiopod Laqueus rubellus is presented. Being one of the smallest of known mt genomes, it has an extremely compact gene organization. While the same 13 polypeptides, two rRNAs, and 22 tRNAs are encoded as in most other animal mtDNAs, lengthy noncoding regions are absent, with the longest apparent intergenic sequence being 54 bp in length. Gene-end sequence overlaps are prevalent, and several stop codons are abbreviated. The genes are generally shorter, and three of the protein-coding genes are the shortest among known homologues. All of the tRNA genes indicate size reduction in either or both of the putative TPsiC and DHU arms compared with standard tRNAs. Possession of a TV (TPsiC arm-variable loop) replacement loop is inferred for tRNA(R) and tRNA(L-tag). The DHU arm appears to be unpaired not only in tRNA(S-tct) and tRNA(S-tga), but also in tRNA(C), tRNA(I), and tRNA(T), a novel condition. All the genes are encoded in the same DNA strand, which has a base composition rich in thymine and guanine. The genome has an overall gene arrangement drastically different from that of any other organisms so far reported, but contains several short segments, composed of 2-3 genes, which are found in other mt genomes. Combined cooccurrence of such gene assortments indicates that the Laqueus mt genome is similar to the annelid Lumbricus, the mollusc Katharina, and the octocoral Sarcophyton mt genomes, each with statistical significance. Widely accepted schemes of metazoan phylogeny suggest that the similarity with the octocoral could have arisen through a process of convergent evolution, while it appears likely that the similarities with the annelid and the mollusc reflect phylogenetic relationships.  相似文献   

10.
Intraerythrocytic stages of mammalian malarial parasites employ glycolysis for energy production but some aspects of mitochondrial function appear crucial to their survival since inhibitors of mitochondrial protein synthesis and electron transport have antimalarial effects. Investigations of the putative mitochondrial genome of Plasmodium falciparum have detected organellar rRNAs and tRNAs encoded by a 35 kb circular DNA. Some features of the organization and sequence of the rRNA genes are reminiscent of chloroplast DNAs. The 35 kb DNA also encodes open reading frames for proteins normally found in chloroplast but not mitochondrial genomes. An apparently unrelated 6 kb tandemly repeated element which encodes two mitochondrial protein coding genes and fragments of rRNA genes is also found in malarial parasites. The malarial mitochondrial genome thus appears quite unusual. Further investigations are expected to provide insights into the possible functional relationships between these molecules and perhaps their evolutionary history.  相似文献   

11.
The putative mitochondrial genome of Plasmodium falciparum   总被引:2,自引:0,他引:2  
Intraerythrocytic stages of mammalian malarial parasites employ glycolysis for energy production but some aspects of mitochondrial function appear crucial to their survival since inhibitors of mitochondrial protein synthesis and electron transport have antimalarial effects. Investigations of the putative mitochondrial genome of Plasmodium falciparum have detected organellar rRNAs and tRNAs encoded by a 35 kb circular DNA. Some features of the organization and sequence of the rRNA genes are reminiscent of chloroplast DNAs. The 35 kb DNA also encodes open reading frames for proteins normally found in chloroplast but not mitochondrial genomes. An apparently unrelated 6 kb tandemly repeated element which encodes two mitochondrial protein coding genes and fragments of rRNA genes is also found in malarial parasites. The malarial mitochondrial genome thus appears quite unusual. Further investigations are expected to provide insights into the possible functional relationships between these molecules and perhaps their evolutionary history.  相似文献   

12.
Copepoda is the most diverse and abundant group of crustaceans, but its phylogenetic relationships are ambiguous. Mitochondrial (mt) genomes are useful for studying evolutionary history, but only six complete Copepoda mt genomes have been made available and these have extremely rearranged genome structures. This study determined the mt genome of Calanus hyperboreus, making it the first reported Arctic copepod mt genome and the first complete mt genome of a calanoid copepod. The mt genome of C. hyperboreus is 17,910 bp in length and it contains the entire set of 37 mt genes, including 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. It has a very unusual gene structure, including the longest control region reported for a crustacean, a large tRNA gene cluster, and reversed GC skews in 11 out of 13 protein-coding genes (84.6%). Despite the unusual features, comparing this genome to published copepod genomes revealed retained pan-crustacean features, as well as a conserved calanoid-specific pattern. Our data provide a foundation for exploring the calanoid pattern and the mechanisms of mt gene rearrangement in the evolutionary history of the copepod mt genome.  相似文献   

13.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

14.
We sequenced most of the mitochondrial (mt) genomes of 2 apocritan taxa: Vanhornia eucnemidarum and Primeuchroeus spp. These mt genomes have similar nucleotide composition and codon usage to those of mt genomes reported for other Hymenoptera, with a total A + T content of 80.1% and 78.2%, respectively. Gene content corresponds to that of other metazoan mt genomes, but gene organization is not conserved. There are a total of 6 tRNA genes rearranged in V. eucnemidarum and 9 in Primeuchroeus spp. Additionally, several noncoding regions were found in the mt genome of V. eucnemidarum, as well as evidence of a sustained gene duplication involving 3 tRNA genes. We also report an inversion of the large and small ribosomal RNA genes in Primeuchroeus spp. mt genome. However, none of the rearrangements reported are phylogenetically informative with respect to the current taxon sample.  相似文献   

15.
The complete nucleotide sequence of the plastid genome of the unicellular primitive red alga Cyanidioschyzon merolae 10D (Cyanidiophyceae) was determined. The genome is a circular DNA composed of 149,987 bp with no inverted repeats. The G + C content of this plastid genome is 37.6%. The C. merolae plastid genome contains 243 genes, which are distributed on both strands and consist of 36 RNA genes (3 rRNAs, 31 tRNAs, tmRNA, and a ribonuclease P RNA component) and 207 protein genes, including unidentified open reading frames. The striking feature of this genome is the high degree of gene compaction; it has very short intergenic distances (approximately 40% of the protein genes were overlapped) and no genes have introns. This genome encodes several genes that are rarely found in other plastid genomes. A gene encoding a subunit of sulfate transporter (cysW) is the first to be identified in a plastid genome. The cysT and cysW genes are located in the C. merolae plastid genome in series, and they probably function together with other nuclear-encoded components of the sulfate transport system. Our phylogenetic results suggest that the Cyanidiophyceae, including C. merolae, are a basal clade within the red lineage plastids.  相似文献   

16.
Mitochondrial DNA was isolated from the Korean freshwater gobioid fish Odontobutis platycephala by long-polymerase chain reaction with conserved primers and this mtDNA was sequenced by primer walking using flanking sequences as sequencing primers. The resultant O. platycephala mtDNA sequence was found to be 17 588 bp in size with a mostly conserved structural organization when compared with that of other teleost fish. Rearrangements of tRNAs (tRNA-Ser, tRNA-Leu, tRNA-His) and an additional non-coding region (533 bp) were present between the ND4 and ND5 genes. In the present paper, the basic characteristics of the O. platycephala mitochondrial genome is reported, including its structural organization, base composition of rRNAs, tRNAs and protein-encoding genes, characteristics of mitochondrial tRNAs and the peculiar rearrangement features of some parts of the mtDNA. Phylogenetic analysis performed using the cytochrome b gene sequences of 16 Korean freshwater fishes (15 gobioids) with the Bayesian algorithm showed that O. platycephala forms a clade (1·00 of posterior probability) with other species of Odontobutis . This suggests that the observed rearrangement between the ND4 and ND5 genes in the O. platycephala mitogenome reflects independent events.  相似文献   

17.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

18.
Plants contain large mitochondrial genomes, which are several times as complex as those in animals, fungi or algae. However, genome size is not correlated with information content. The mitochondrial genome (mtDNA) of Arabidopsis specifies only 58 genes in 367 kb, whereas the 184 kb mtDNA in the liverwort Marchantia polymorpha codes for 66 genes, and the 58 kb genome in the green alga Prototheca wickerhamii encodes 63 genes. In Arabidopsis’ mtDNA, genes for subunits of complex II, for several ribosomal proteins and for 16 tRNAs are missing, some of which have been transferred recently to the nuclear genome. Numerous integrated fragments originate from alien genomes, including 16 sequence stretches of plastid origin, 41 fragments of nuclear (retro)transposons and two fragments of fungal viruses. These immigrant sequences suggest that the large size of plant mitochondrial genomes is caused by secondary expansion as a result of integration and propagation, and is thus a derived trait established during the evolution of land plants.  相似文献   

19.
A Roy  R A Cox  D H Williamson  R J Wilson 《Protist》1999,150(2):183-188
The plastid organelle of malarial and other apicomplexan parasites contains ribosome-like particles as well as a genome dedicated largely to specifying components of a protein expression system. We have identified plastid ribosomes using hybridization studies and show that in erythrocytic stages of Plasmodium falciparum a subset of polysomes carries plastid-specified rRNAs and mRNA, supporting the idea that protein synthesis is active in the plastid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号