首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the advent of protein and antibody microarray technology several different coatings and protocols have been published, which may be broadly divided into two types: gel-coated surfaces and plain non-gel-coated glass or plastic surfaces, some with chemical groups attached. We have screened 11 different array surfaces of both types and compared them with respect to their detection limit, inter- and intrachip variation, and storage characteristics. Five different antibodies were immobilized onto each type of microarray support, with total protein concentrations ranging from 40 fmol to 25 amol per spot. From these results, it was seen that some antibodies were more suited for use on antibody arrays. All measurements were performed in quadruplicate, and the results revealed high signal uniformity and reproducibility of most plain glass and plastic slides. Lower detection limits were obtained with polyacrylamide-coated slides, making them more suitable for the detection of very low concentrations of antigen. All microarray coatings could be stored for a period of 8 weeks; however, improved results were seen after 2 weeks of storage. In conclusion, the results indicate the need to test each antibody to be used on an antibody array and to select the microarray coating based on experimental requirements.  相似文献   

2.
The preparation of effective conventional antibody microarrays depends on the availability of high quality material and on the correct accessibility of the antibody active moieties following their immobilization on the support slide. We show that spotting bacteria that expose recombinant antibodies on their external surface directly on nanostructured-TiO(2) or epoxy slides (purification-independent microarray - PIM) is a simple and reliable alternative for preparing sensitive and specific microarrays for antigen detection. Variable domains of single heavy-chain antibodies (VHHs) against fibroblast growth factor receptor 1 (FGFR1) were used to capture the antigen diluted in serum or BSA solution. The FGFR1 detection was performed by either direct antigen labeling or using a sandwich system in which FGFR1 was first bound to its antibody and successively identified using a labeled FGF. In both cases the signal distribution within each spot was uniform and spot morphology regular. The signal-to-noise ratio of the signal was extremely elevated and the specificity of the system was proved statistically. The LOD of the system for the antigen was calculated being 0.4ng/mL and the dynamic range between 0.4ng/mL and 10μg/mL. The microarrays prepared with bacteria exposing antibodies remain fully functional for at least 31 days after spotting. We finally demonstrated that the method is suitable for other antigen-antibody pairs and expect that it could be easily adapted to further applications such as the display of scFv and IgG antibodies or the autoantibody detection using protein PIMs.  相似文献   

3.
Protein microarray technology facilitates the detection and quantification of hundreds of binding reactions in one reaction from a minute amount of sample. Proof-of-concept studies have shown that the set-up of sensitive assay systems based on protein arrays is possible, however, the lack of specific capture reagents limits their use. Therefore, the generation and characterisation of capture molecules is one of the key topics for the development of protein array based systems. Recombinant antibody technologies, such as HuCAL (human combinatorial antibody library; MorphoSys, Munich, Germany), allow the fast generation of highly specific binders to nearly any given target molecule. Although antibody libraries comprise billions of members, it is not the selection process, but the detailed characterisation of the pre-selected monoclonal antibodies that presents the bottleneck for the production of high numbers of specific binders. In order to obtain detailed information on the properties of such antibodies, a microarray-based method has been developed. We show that it is possible to define the specificity of recombinant Fab fragments by protein and peptide microarrays and that antibodies can be classified by binding patterns. Since the assay uses a miniaturised system for the detection of antibody-antigen interactions, the observed binding occurs under ambient analyte conditions as defined by Ekins (J. Pharm. Biomed. Anal. 1989, 7, 155-168). This allows the determination of a relative affinity value for each binding event, and a ranking according to affinity is possible. The new microarray based approach has an extraordinary potential to speed up the screening process for the generation of recombinant antibodies with pre-defined selection criteria, since it is intrinsically a high-throughput technology.  相似文献   

4.
To improve the sensitivity of antibody microarray assays, we developed ENSAM (Europium Nanoparticles for Signal enhancement of Antibody Microarrays). ENSAM is based on two nanomaterials. The first is polystyrene nanoparticles incorporated with europium chelate (beta-diketone) and coated with streptavidin. The multiple fluorophores incorporated into each nanoparticle should increase signal obtained from a single binding event. The second nanomaterial is array surfaces of nanoporous silicon, which creates high capacity for antibody adsorption. Two antibody microarray assays were compared: ENSAM and use of streptavidin labeled with a nine-dentate europium chelate. Analyzing biotinylated prostate-specific antigen (PSA) spiked into human female serum, ENSAM yielded a 10-fold signal enhancement compared to the streptavidin-europium chelate. Similarly, we observed around 1 order of magnitude greater sensitivity for the ENSAM assay (limit of detection < or = 0.14 ng/mL, dynamic range > 10(5)) compared to the streptavidin-europium chelate assay (limit of detection < or = 0.7 ng/mL, dynamic range > 10(4)). Analysis of a titration series showed strong linearity of ENSAM ( R2 = 0.99 by linear regression). This work demonstrates the novel utility of nanoparticles with time-resolved fluorescence for signal enhancement of antibody microarrays, requiring as low as 100-200 zmol biotinylated PSA per microarray spot. In addition, proof of principle was shown for analyzing PSA in plasma obtained from patients undergoing clinical PSA-testing.  相似文献   

5.
An immunosensing system based on a quartz crystal microbalance (QCM) is presented for the selection of both antigen specific recombinant antibodies and antigen specific human pancreatic secretory trypsin inhibitor (hPSTI) mutants isolated from large phage libraries. The QCM was integrated into a flow injection analysis system for the straightforward analysis of large sample numbers. Measurements were performed using a biotinylated antigen immobilized by streptavidin onto the gold surface of the quartz crystal and phages displaying recombinant antibodies or hPSTI mutants. The results obtained by the QCM were in accordance to those of a well established enzyme linked immunosorbent assay (ELISA). Therefore, the QCM is well suited for the detection of single high affinity clones isolated from large phage display libraries.  相似文献   

6.
The authors report 2 biochip platforms on gold manufactured by either nanoscale biotinylated self-assembled architectures to streptavidin surface or proteins containing free NH(2) groups to N-hydroxysuccinimide (NHS)-activated surfaces and investigated the potential application of tumor necrosis factor-alpha (TNFalpha) serodiagnosis of hemophagocytic lymphohistiocytosis (HLH). Interactions of TNFalpha antigen and TNFalpha antibody on the biochips were optimized using an indirect immunofluorescence method. Variation coefficients were 1.87% to 4.56% on the streptavidin biochip and 5.03% to 8.64% on the NHS biochip. The correlation coefficients (r) in TNFalpha and TNFalpha antibody assays in HLH patients between the 2 biochip formats were 0.9623 and 0.9386 and the concordance frequencies were 92.2% and 96.1%, respectively. To detect plasma TNFalpha-receptor complexes (TNFR1 and R2) in HLH, a biochip assay strategy was developed. Plasma levels of TNFalpha, TNFalpha antibody, and TNFalpha-receptor complexes (TNFR1 and R2) were detected in plasmas from 42 HLH cases using streptavidin biochips. Frequencies of the biomarkers in the plasmas were 40.5% (17/42) for TNFalpha, 30.9% (13/42) for TNFalpha antibody, 28.6% (12/42) for TNFalpha-receptor 1 complex, and 26.1% (11/42) for TNFalpha-receptor 2 complex, respectively. The streptavidin biochip format was more sensitive than the NHS surface and was demonstrated to be a valuable tool to identify individual biomarker molecules and molecular complexes in sera and cell lysates and to track therapeutic progress of patients.  相似文献   

7.
A specific protein assay system based on functional liposome-modified gold electrodes has been demonstrated. To fabricate such assay system, a liposome layer was initially grown on top of a gold layer. The liposome layer contained two kinds of functional molecules: biotin molecules for the binding sites of streptavidin and N-(10,12-pentacosadiynoic)-acetylferrocene molecules for the facile redox probe in electrochemical detections. Then, streptavidin was attached on the functional liposme-modified layer using the interaction of streptavidin-sbiotin complex. On the streptavidin-attached surface, antibody molecules, anti-human serum albumin antibodies could be immobilized without any secondary antibodies. AFM imaging of the streptavidin-attached liposome surface revealed a uniform distribution of closely packed streptavidin molecules. In situ quartz-crystal microbalance and electrochemical measurements demonstrated that the wanted antibody-antigen reactions should occur with high specificity and selectivity. Our specific antibody assay system, based on a functional liposome modified electrode, can be developed further to yield sophisticated structures for numerous protein chips and immunoassay sensors.  相似文献   

8.
We describe a novel procedure for determination and validation of off-target activities of anti-cluster designation antigen identity 44 (CD44) variant 6 recombinant antibodies by combining two complementary technology platforms; namely UNIchip AV-400, containing a printed serial dilution of CD44 variant 6 and approximately 400 different human proteins, and TISSOMICS, enabling human tissue microarray analysis in high-throughput mode. We have analyzed the performance of two human monoclonal recombinant antibodies directed against CD44 variant 6 protein, BMS 116 and BMS 125, in a blinded study. The antibodies exhibit a clear differentiation with regard to their binding profiles in the two systems. BMS 116 shows a low degree of specificity in the normal human Food and Drug Administration (FDA) tissue panel, which was confirmed by binding to more than 206 proteins on the protein biochip. In contrast, BMS 125 gives a highly selective membranous staining on selected human epithelial tissue components with no off-target activities observed on the protein biochip. Additionally, antibody BMS 125 shows a higher sensitivity to its antigen CD44 variant 6 than antibody BMS 116 as determined by the protein biochip.  相似文献   

9.
Control of microorganisms such as Bacillus cereus spores is critical to ensure the safety and a long shelf life of foods. A bifunctional single chain antibody has been developed for detection and binding of B. cereus T spores. The genes that encode B. cereus T spore single-chain antibody and streptavidin were connected for use in immunoassays and immobilization of the recombinant antibodies. A truncated streptavidin, which is smaller than but has biotin binding ability similar to that of streptavidin, was used as the affinity domain because of its high and specific affinity with biotin. The fusion protein gene was expressed in Escherichia coli BL21 (DE3) with the T7 RNA polymerase-T7 promoter expression system. Immunoblotting revealed an antigen specificity similar to that of its parent native monoclonal antibody. The single-chain antibody-streptavidin fusion protein can be used in an immunoassay of B. cereus spores by applying a biotinylated enzyme detection system. The recombinant antibodies were immobilized on biotinylated magnetic beads by taking advantage of the strong biotin-streptavidin affinity. Various liquids were artificially contaminated with 5 × 104 B. cereus spores per ml. Greater than 90% of the B. cereus spores in phosphate buffer or 37% of the spores in whole milk were tightly bound and removed from the liquid phase by the immunomagnetic beads.  相似文献   

10.
The design and fabrication of protein biochips requires characterization of blocking agents that minimize nonspecific binding of proteins or organisms. Nonspecific adsorption of Escherichia coli, Listeria innocua, and Listeria monocytogenes is prevented by bovine serum albumin (BSA) or biotinylated BSA adsorbed on SiO(2) surfaces of a biochip that had been modified with a C(18) coating. Biotinylated BSA forms a protein-based surface that in turn binds streptavidin. Because streptavidin has multiple binding sites for biotin, it in turn anchors other biotinylated proteins, including antibodies. Hence, biotinylated BSA simultaneously serves as a blocking agent and a foundation for binding an interfacing protein, avidin or streptavidin, which in turns anchors biotinylated antibody. In our case, the antibody is C11E9, an IgG-type antibody that binds Listeria spp. Nonspecific adsorption of another bacterium, Escherichia coli, is also minimized due to the blocking action of the BSA. The blocking characteristics of BSA adsorbed on C(18)-derivatized SiO(2) surfaces for construction of a protein biochip for electronic detection of pathogenic organisms is investigated.  相似文献   

11.
We report a novel high-throughput (HTP) protein chip platform, constructed on gold using self-assembly techniques, for conducting high quality antigen-antibody interactions. Biotinylated monolayers were used to immobilize a streptavidin surface with high packing density. This biocompatible platform was then used for detection of serum IgM antibodies. Serum samples of patients suspected to suffer from Lyme borreliosis were used to validate the protein chip platform using biotinylated peptide AAOspC8 molecules as the test probes. Various experimental parameters such as the effect of concentration of probes, targets, temperature of incubation, and their effect on the resulting signal-to-noise ratio are described in detail. Highly specific protein interaction data with a high signal-to-noise ratio were obtained with serum sample solutions as low as 1 microL/spot (1/10 diluted).  相似文献   

12.
Antibody microarrays have the potential to revolutionize protein diagnostics. The major problems in the fabrication of antibody arrays, however, concern the reproducibility and homogeneity of the attachment of the proteins on the solid substrate. We here compare the DNA-directed immobilization (DDI) method with two conventional strategies for immobilization of antibodies on glass substrates. DDI is based on the self-assembly of semisynthetic DNA-streptavidin conjugates which converts an array of DNA oligomers into an antibody microarray. DDI was compared with direct spotting of antibodies on chemically activated glass slides and with immobilization of biotinylated antibodies on streptavidin-coated slides. The immobilized antibodies were used as capture reagents in a two-sided (sandwich) immunoassay for the quantification of rabbit IgG as a model antigen. Detection limits down to 0.001nM (150 pg/mL) were attained with all three array formats; however, DDI and direct spotting of the antibodies led to the highest fluorescence intensities. DDI led to the best spot homogeneity and intra- and interexperimental reproducibility. Moreover, DDI allowed highly economical use of antibody materials; that is, at least 100-fold less antibody is needed for preparing an array by DDI instead of by direct spotting. Taking into account the greater versatility and convenience of handling of the self-assembly approach, this study demonstrates that DDI is an advantageous alternative for generating versatile and robust protein arrays.  相似文献   

13.
In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PHA-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6 ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.  相似文献   

14.
A biochip for detecting 26 cluster differentiation (CD), HLA-DR and IgM antigens on lymphocyte surface is described. The biochip, which represents a microarray of antibodies (IgG) against a panel of selected antigens immobilized on transparent plastic surfaces in 1.5-mm spots, was used for the study of normal and neoplastic lymphocytes and can also be used for determining percent of cells expressing definite surface antigens in lymphocyte suspensions. The results are consistent with data obtained by flow cytometry. The novel biochip technology entails a combination of conventional staining of cells immobilized on biochips and morphological analysis.  相似文献   

15.
Two attractive features of ELISA are the specificity of antibody-antigen recognition and the sensitivity achieved by enzymatic amplification. This report describes the development of a non-enzymatic molecular recognition platform adaptable to point-of-care clinical settings and field detection of biohazardous materials. This filament-antibody recognition assay (FARA) is based on circumferential bands of antibody probes coupled to a 120 microm diameter polyester filament. One advantage of this design is that automated processing is achieved by sequential positioning of filament-coupled probes through a series of 25-60 microL liquid filled microcapillary chambers. This approach was evaluated by testing for the presence of M13KO7 bacterial virus using anti-M13KO7 IgG(1) monoclonal antibody coupled to a filament. Filament motion first positioned the antibodies within a microcapillary tube containing a solution of M13KO7 virus before moving the probes through subsequent chambers, where the filament-coupled probes were washed, exposed to a fluorescently labeled anti-M13K07 antibody, and washed again. Filament fluorescence was then measured using a flatbed microarray scanner. The presence of virus in solution produced a characteristic increase in filament fluorescence only in regions containing coupled antibody probes. Even without the enzymatic amplification of a typical ELISA, the presence of 8.3 x 10(8) virus particles produced a 30-fold increase in fluorescence over an immobilized negative control antibody. In an ELISA comparison study, the filament-based approach had a similar lower limit of sensitivity of approximately 1.7 x 10(7) virus particles. This platform may prove attractive for point-of-care settings, the detection of biohazardous materials, or other applications where sensitive, rapid, and automated molecular recognition is desired.  相似文献   

16.
Antibody microarray is a rapidly emerging, powerful approach with great promise within high-throughput proteomics. However, before a truly proteome-wide analysis can be performed, the antibody array format needs to be miniaturized even further in order to enable ultradense arrays to be fabricated. To this end, we have designed and generated proof-of-concept for the first generation of an atto-vial based recombinant antibody array platform. Briefly, we have designed a novel nanostructured substrate using electron beam lithography. Vials, ranging in volume/size from 6 (200 nm in diameter) to 4000 aL (5 microm in diameter), were fabricated. Human recombinant single-chain Fv antibody fragments, microarray adopted by design, were used as probes. The set-up was interfaced with planar wave-guide technology for evanescant field fluorescence detection. The results showed that protein analytes could be specifically detected in the subzeptomole range for pure systems, using vials down to 57 aL. Further, low-abundant (pg/mL) protein analytes could be detected in directly labeled complex proteomes, such as human whole serum, using 157 aL-vials. Taken together, these results outline the potential of the atto-vial array set-up for miniaturized affinity proteomics-based approaches.  相似文献   

17.
Regulated secretion and purification of recombinant antibodies in E. coli.   总被引:1,自引:0,他引:1  
A plasmid for optimized protein expression of recombinant Fv antibodies (pOPE) in E. coli was used to express the variable domains of the murine monoclonal antibody HD39 specific for the human B-cell surface antigen CD22. The production of Fv antibodies by pOPE can be regulated over a wide range by varying the IPTG concentration. Antibodies that can discriminate between secreted and nonsecreted Fv antibody fragments were used to show that secretion is the limiting step for the production of functional Fv antibodies. IPTG concentrations above 20 microM increased the total antibody production, but did not yield larger amounts of secreted Fv antibodies. The addition of five histidines to the C terminus facilitates an easy single-step enrichment procedure based on immobilized metal affinity chromatography.  相似文献   

18.
It is shown that a streptavidin monolayer immobilized onto an evaporated gold film with biotin forms the basis of a highly specific sensing element. As an example, we show that by immobilizing the biotinylated antibody sex hormone binding globulin (alpha-SHBG) to the bound streptavidin monolayer a specific sensor for the antigen SHBG is readily fabricated. The interaction between immobilized antibody and corresponding antigen is monitored by surface plasmon resonance spectroscopy and is shown to follow a classic Langmuir isotherm. Detection of SHBG at nanomolar concentrations is demonstrated.  相似文献   

19.
Zhu Y  Xu L  Ma W  Chen W  Yan W  Kuang H  Wang L  Xu C 《Biosensors & bioelectronics》2011,26(11):4393-4398
In this paper, we demonstrate the application of versatile G-quadruplex-hemin DNAzymes in an immunoassay for detecting Microcystin-LR (MC-LR). Taking advantage of the high peroxidase activity of G-quadruplex-hemin complexes and the enhancement effect of gold nanoparticles (AuNPs), the method showed simple, high sensitive and selectivity detection of target toxin residues in water samples. The coated antigen, MC-LR-ovalbumin (OVA) coated on a plate, competed for MC-LR antibody with added target analyte to form antibody-antigen immune complexes. Subsequently, the immune complex reacted with G-quadruplex-labeled secondary antibodies for colorimetric detection of MC-LR. This assay specifically determined MC-LR in the linear range of 0.1-10 ng/ml, with a limit of detection (LOD) of 0.05 ng/mL for MC-LR. The results indicated that the novel immunoassay was an alternative to traditional plate-based immunoassay for MC-LR residue screening due to this method met the standard of World Health Organization (WHO) requirements for MC-LR content in drinking water (1 ng/mL).  相似文献   

20.
A new method of determination of rate constants for antigen-antibody interactions is proposed. This method is based on a solid phase immunoenzymatic analysis of the dynamics of elution of immobilized antigen-bound antibodies in the presence of a free antigen. The kinetics of this process is described by a system of differential equations, whose solution results in expression defining the dynamics of antibody interaction with immobilized and free antigens. Simple formulas were derived for the calculation of the rate and equilibrium constants for the antibody-antigen reaction on the basis of experimental kinetic curves. The use of theoretical kinetic curves for antibody elution showed that these formulas reflect with a high degree of accuracy the kinetic properties of the reaction under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号