首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM-MSCs was first verified in a pellet culture. The BM-MSCs were then either seeded onto a composite scaffold rhCo-PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM-MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM-MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM-MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell-biomaterial constructs for cartilage regeneration.  相似文献   

4.
Human mesenchymal stem cells (MSCs) were cultured in vitro in a cobweb-like biodegradable polymer scaffold: a poly(dl-lactic-co-glycolic acid)-collagen hybrid mesh in serum-free DMEM containing TGF-beta3 for 1-10 weeks. The cells adhered to the hybrid mesh, distributed evenly, and proliferated to fill the spaces in the scaffold. The ability of the cells to express gene encoding type I collagen decreased, whereas its ability to express type II collagen and aggrecan increased. Histological examination by HE staining indicated that the cells showed fibroblast morphology at the early stage and became round after culture for 4 weeks. The cartilaginous matrices were positively stained by safranin O and toluidine blue. Immunostaining with anti-type II collagen and anti-cartilage proteoglycan showed that type II collagen and cartilage proteoglycan were detected around the cells. In addition, a homogeneous distribution of cartilaginous extracellular matrices was detected around the cells. These results suggest the chondrogenic differentiation of the mesenchymal stem cells in the hybrid mesh. The PLGA-collagen hybrid mesh enabled the aggregation of mesenchymal stem cells and provided a promotive microenvironment for the chondrogenic differentiation of the MSCs.  相似文献   

5.
Human bone marrow-derived mesenchymal stem cells (MSCs) have been shown to differentiate into distinct mesenchymal tissues including bone and cartilage. The capacity of MSCs to replicate undifferentiated and to mature into cartilaginous tissues suggests these cells as an attractive cell source for cartilage tissue engineering. Here we show that the stimulation of human bone marrow-derived MSCs with recombinant bone morphogenetic protein-2 (BMP2) results in chondrogenic lineage development under serum-free conditions. Histological staining of proteoglycan with Alcian blue and immunohistochemical staining of cartilage-specific type II collagen revealed the deposition of typical cartilage extracellular matrix components. Semi-quantitative real-time gene expression analysis of characteristic chondrocytic matrix genes, such as cartilage link protein, cartilage oligomeric matrix protein, aggrecan, and types I, II, and IX collagen, confirmed the induction of the chondrocytic phenotype in high-density culture upon stimulation with BMP2 and transforming growth factor-beta3 (TGFbeta3). Histologic staining of mineralized extracellular matrix with von Kossa, immunostaining of type X collagen (typical for hypertrophic chondrocytes), and gene expression analysis of osteocalcin and adipocyte-specific fatty acid binding protein (aP2) further documented that BMP2 induced chondrogenic lineage development and not osteogenesis and/or adipogenesis in human MSCs. These results suggest BMP2 as a promising candidate for tissue engineering approaches regenerating articular cartilage on the basis of mesenchymal progenitors from bone marrow.  相似文献   

6.
In cartilaginous tissues, perichondrium cambium layer may be the source of new cartilage. Human nasal septal perichondrium is considered to be a homogeneous structure in which some authors do not recognize the perichondrium internal zone or the cambium layer as a layer distinct from adjacent cartilage surface. In the present study, we isolated a chondrogenic cell population from human nasal septal cartilage surface zone. Nasoseptal chondrogenic cells were positive for surface markers described for mesenchymal stem cells, with exception of CD146, a perivascular cell marker, which is consistent with their avascular niche in cartilage. Although only Sox-9 was constitutively expressed, they also revealed osteogenic and chondrogenic, but not adipogenic, potentials in vitro, suggesting a more restricted lineage potential compared to mesenchymal stem cells. Interestingly, even in absence of chondrogenic growth factors in the pellet culture system, nasoseptal chondrogenic cells had a capacity to synthesize sulfated glycosaminoglycans, large amounts of collagen type II and to a lesser extent collagen type I. The spontaneous chondrogenic potential of this population of cells indicates that they may be a possible source for cartilage tissue engineering. Besides, the pellet culture system using nasoseptal chondrogenic cells may also be a model for studies of chondrogenesis.  相似文献   

7.
Mesenchymal stem cells (MSC) have the potential to differentiate into distinct mesenchymal tissues including cartilage, which suggest these cells as an attractive cell source for cartilage tissue engineering approaches. Our objective was to study the effects of TGF-beta1, hyaluronic acid and synovial fluid on chondrogenic differentiation of equine MSC. For that, bone marrow was aspirated from the tibia of one 18-month-old horse (Haflinger) and MSC were isolated using percoll-density centrifugation. To promote chondrogenesis, MSC were centrifuged to form a micromass and were cultured in a medium containing 10 ng/ml TGF-beta1 or 0.1mg/ml hyaluronic acid (Hylartil, Ostenil) or either 5%, 10% or 50% autologous synovial fluid as the chondrogenesis inducing factor. Differentiation along the chondrogenic lineage was documented by type II collagen and proteoglycan expression. MSC induced by TGF-beta1 alone showed the highest proteoglycan expression. Combining TGF-beta1 with hyaluronic acid could not increase the proteoglycan expression. Cultures stimulated by autologous synovial fluid (independent of concentration) and hyaluronic acid demonstrated a pronounced, but lower proteoglycan expression than cultures stimulated by TGF-beta1. The expression of cartilage-specific type II collagen was high and about the same in all stimulated cultures. In summary, hyaluronic acid and autologous synovial fluid induces chondrogenesis of equine mesenchymal stem cells, which encourage tissue engineering applications of MSC in chondral defects, as the natural environment in the joint is favorable for chondrogenic differentiation.  相似文献   

8.
Human adipose tissue is a viable source of mesenchymal stem cells (MSCs) with wide differentiation potential for musculoskeletal tissue engineering research. The stem cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and expanded in vitro easily. This study was to determine molecular and cellular characterization of PLA cells during chondrogenic differentiation in vitro and cartilage formation in vivo . When cultured in vitro with chondrogenic medium as monolayers in high density, they could be induced toward the chondrogenic lineages. To determine their ability of cartilage formation in vivo , the induced cells in alginate gel were implanted in nude mice subcutaneously for up to 20 weeks. Histological and immunohistochemical analysis of the induced cells and retrieved specimens from nude mice at various intervals showed obviously cartilaginous phenotype with positive staining of specific extracellular matrix (ECM). Correlatively, results of RT-PCR and Western Blot confirmed the expression of characteristic molecules during chondrogenic differentiation namely collagen type II, SOX9, cartilage oligomeric protein (COMP) and the cartilage-specific proteoglycan aggrecan. Meanwhile, there was low level synthesis of collagen type X and decreasing production of collagen type I during induction in vitro and formation of cartilaginous tissue in vivo . These cells induced to form engineered cartilage can maintain the stable phenotype and indicate no sign of hypertrophy in 20 weeks in vivo , however, when they cultured as monolayers, they showed prehypertrophic alteration in late stage about 10 weeks after induction. Therefore, it is suggested that human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis and forming engineered cartilage.  相似文献   

9.
10.
11.
The aim of this study was to explore the ability for chondrogenic differentiation of bone marrow mesenchymal stems cells (BMSCs) induced by either cartilage-derived morphogenetic protein 1 (CDMP-1) alone or in the presence of transforming growth factor-β1 (TGF-β1) in vivo and in vitro. BMSCs and poly-lactic acid/glycolic acid copolymer (PLGA) scaffold were analyzed for chondrogenic capacity induced by CDMP-1 and TGF-β1 in vivo and in vitro. Chondrogenic differentiation of BMSCs into chondrocytes using a high density pellet culture system was tested, whether they could be maintained in 3-D PLGA scaffold instead of pellet culture remains to be explored. Under the culture of high-density cell suspension and PLGA frame, BMSCs were observed the ability to repair cartilage defects by either CDMP-1 alone or in the presence of TGF-β1 in vitro. Then the cell-scaffold complex was implanted into animals for 4 and 8 weeks for in vivo test. The content of collagen type II and proteoglycan appeared to increase over time in the constructs of the induced groups (CDMP in the presence of TGF-β1), CDMP group and TGF group. However, the construct of the control group did not express them during the whole culture time. At 4 and 8 weeks, the collagen type II expression of the induced group was higher than the sum of TGF group and CDMP group by SSPS17.0 analysis. BMSCs and PLGA complex induced by CDMP-1 and TGF- β1 can repair cartilage defects more effectively than that induced by CDMP-1 or TGF-β1 only.  相似文献   

12.
We investigated the influence of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells (MSCs). During chondrogenic induction, MSCs combined with polyglycolic acid (PGA) were cultured by static culture or microgravity rotating culture and chondrocyte formation was confirmed by toluidine blue staining. Furthermore, the mRNA and protein expressions of a specific cartilage extracellular matrix protein (collagen type II and Aggrecan) were evaluated by real-time RT-PCR and western blot, respectively. Toluidine blue staining indicated the OD values of proteoglycans semi-determination were higher in the microgravity rotating culture group than the static culture group. Following chondrogenic induction, mRNA and proteins of collagen type II and Aggrecan were more significantly expressed in cells of the microgravity rotating culture group compared with the controls. Compared with routine three-dimensional static culture, the microgravity rotating culture system was more effective for the construction of tissue-engineered cartilage in vitro.  相似文献   

13.

Introduction

Transplantation of mesenchymal stem cells (MSCs) derived from synovium is a promising therapy for cartilage regeneration. For clinical application, improvement of handling operation, enhancement of chondrogenic potential, and increase of MSCs adhesion efficiency are needed to achieve a more successful cartilage regeneration with a limited number of MSCs without scaffold. The use of aggregated MSCs may be one of the solutions. Here, we investigated the handling, properties and effectiveness of aggregated MSCs for cartilage regeneration.

Methods

Human and rabbit synovial MSCs were aggregated using the hanging drop technique. The gene expression changes after aggregation of synovial MSCs were analyzed by microarray and real time RT-PCR analyses. In vitro and in vivo chondrogenic potential of aggregates of synovial MSCs was examined.

Results

Aggregates of MSCs cultured for three days became visible, approximately 1 mm in diameter and solid and durable by manipulation; most of the cells were viable. Microarray analysis revealed up-regulation of chondrogenesis-related, anti-inflammatory and anti-apoptotic genes in aggregates of MSCs. In vitro studies showed higher amounts of cartilage matrix synthesis in pellets derived from aggregates of MSCs compared to pellets derived from MSCs cultured in a monolayer. In in vivo studies in rabbits, aggregates of MSCs could adhere promptly on the osteochondral defects by surface tension, and stay without any loss. Transplantation of aggregates of MSCs at relatively low density achieved successful cartilage regeneration. Contrary to our expectation, transplantation of aggregates of MSCs at high density failed to regenerate cartilage due to cell death and nutrient deprivation of aggregates of MSCs.

Conclusions

Aggregated synovial MSCs were a useful source for cartilage regeneration considering such factors as easy preparation, higher chondrogenic potential and efficient attachment.  相似文献   

14.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Campbell JJ  Lee DA  Bader DL 《Biorheology》2006,43(3-4):455-470
This study tests the hypothesis that dynamic compressive strain selectively enhances chondrogenic differentiation by human mesenchymal stem cells (MSCs). Primary MSCs were isolated and expended in monolayer culture. The cells were seeded in alginate constructs or in pellet culture. The time course of chondrogenic differentiation was assessed by real-time QPCR of mRNA expression analysis for cartilage specific markers. Collagen types II and X mRNA, not present in undifferentiated MSCs, were detectable by 2-4 days of chondrogenic induction and continued to rise significantly throughout the culture period of 10 days (p < 0.001). Basal levels of gene expression for Sox-9 and aggrecan were evident in undifferentiated MSCs, although chondrogenic induction for a period of 8 days resulted in an increased trend in the gene expression levels. The alginate system was also used in mechanical conditioning studies. Dynamic compression was applied, in an intermittent regimen, at a strain amplitude of 15% and frequency of 1 Hz in the presence and absence of 10 ng/ml TGFbeta3, for a period of 8 days. Results indicated significant changes in the levels of mRNA expression for the chondrogenic markers. For example, by day 8, the application of the strain regimen alone caused an up-regulation in all the chondrogenic markers compared to the control samples (no TGFbeta, no compression). However, the combined effects of strain and TGFbeta on these markers were more complex than purely additive.  相似文献   

16.
Articular cartilage has a poor intrinsic capacity for self-repair. The advent of autologous chondrocyte implantation has provided a feasible method to treat cartilage defects. However, the associated drawbacks with the isolation and expansion of chondrocytes from autologous tissue has prompted research into alternative cell sources such as mesenchymal stem cells (MSCs) which have been found to exist in the bone marrow as well as other joint tissues such as the infrapatellar fat pad (IFP), synovium and within the synovial fluid itself. In this work we assessed the chondrogenic potential of IFP-derived porcine cells over a 6 week period in agarose hydrogel culture in terms of mechanical properties, biochemical content and histology. It was found that IFP cells underwent robust chondrogenesis as assessed by glycosaminoglycan (1.47±0.22% w/w) and collagen (1.44±0.22% w/w) accumulation after 42 days of culture. The 1 Hz dynamic modulus of the engineered tissue at this time point was 272.8 kPa (±46.8). The removal of TGF-β3 from culture after 21 days was shown to have a significant effect on both the mechanical properties and biochemical content of IFP constructs after 42 days, with minimal increases occurring from day 21 to day 42 without continued supplementation of TGF-β3. These findings further strengthen the case that the IFP may be a promising cell source for putative cartilage repair strategies.  相似文献   

17.
The aggregation of chondroprogenitor mesenchymal cells into precartilage condensation represents one of the earliest events in chondrogenesis. N-cadherin is a key cell adhesion molecule implicated in chondrogenic differentiation. Recently, ADAM10-mediated cleavage of N-cadherin has been reported to play an important role in cell adhesion, migration, development and signaling. However, the significance of N-cadherin cleavage in chondrocyte differentiation has not been determined. In the present study, we found that the protein turnover of N-cadherin is accelerated during the early phase of chondrogenic differentiation in ATDC5 cells. Therefore, we generated the subclones of ATDC5 cells overexpressing wild-type N-cadherin, and two types of subclones overexpressing a cleavage-defective N-cadherin mutant, and examined the response of these cells to insulin stimulation. The ATDC5 cells overexpressing cleavage-defective mutants severely prevented the formation of cartilage aggregates, proteoglycan production and the induction of chondrocyte marker gene expression, such as type II collagen, aggrecan and type X collagen. These results suggested that the cleavage of N-cadherin is essential for chondrocyte differentiation.  相似文献   

18.
19.
20.
Cells with the desired phenotype and number are critical for regenerative medicine and tissue engineering. Uniparental parthenogenetic embryonic stem cells (pESCs) share fundamental properties with embryonic stem cells. This study aims to determine the viability of pESC-based tissue engineering for bone and cartilage reconstruction. The mouse pESCs were cultured in suspension to form embryoid bodies. An adherent cultivation approach was employed to obtain parthenogenetic embryonic mesenchymal stem cells (pMSCs) from the embryoid bodies. Then, the pMSCs were cultured in conditional media to differentiate into osteogenic and chondrogenic lineages. The pESC-derived osteoblasts and chondroblasts were seeded into coral and sodium alginate scaffolds, respectively. The cell-seeded scaffolds were implanted into dorsal subcutaneous pockets of nude mice to evaluate ectopic reconstruction of bone and cartilage. We demonstrated that pESCs display the capacity to differentiate into all three germ layers. The generated pMSCs were able to differentiate into osteogenic and chondrogenic lineages, which survived well after seeding into coral and alginate acid scaffolds. Six weeks after cell-scaffold implantation, gross inspection and histological examination revealed that ectopic bone and cartilage tissues had successfully regenerated in the specimen. According to the findings of this study, pESC derivatives have a high potential for bone and cartilage regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号