首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface grafting of liposomes with the wide variety of ligands including antibodies and other proteins is a promising approach for targeted delivery of therapeutics. In this paper, we describe a simple method of synthesizing a hydrazine-functionalized poly(ethylene glycol)-phosphatidylethanolamine (PEG-PE)-based amphiphilic polymer which can conjugate a variety of ligands via a reversible, pH-cleavable bond. In this method, the targeting ligand is attached to the distal end of the PEG chain, which facilitates its easy access to the targeted site of interaction. The reversible attachment of targeting ligands is useful especially in multifunctional liposomal systems, whereafter successfully performing the function of targeting to the specific site, the bulky ligands, such as proteins or antibodies, are cleaved off in response to an environmental stimulus to expose some other functionalities such as ligands for intracellular penetration or organelle-specific targeting. To investigate the applicability of the protocol, the model ligands monoclonal antinucleosome antibody 2C5 and antimyosin antibody 2G4, and glycoproteins concanavalin A (Con-A) and avidin were conjugated to the synthesized polymer and incorporated into liposomes. In vitro assays including biochemical, enzyme-linked immunosorbent, fluorescence microscopy, and flow cytometry were used to confirm three key characteristics of the modified and/or liposome-attached proteins: successful conjugation of the targeting ligands to the polymer, preservation of specific activity of the ligands after the conjugation and liposome attachment, and the facile pH-sensitive ligand detachment. Monoclonal antibody 2C5 and 2G4, immobilized on the liposome surface, retained their binding affinity to corresponding antigens as confirmed by ELISA. The Con A-bearing liposomes showed significantly higher agglutination in the presence of its substrate mannan compared to plain liposomes (PL) and avidin-functionalized liposomes bound specifically with biotin-agarose. The study on the pH-dependence showed that almost 80% of the hydrazone bond was cleaved after rather brief preincubation of the immunoliposomes at pH 5 for 0.5 to 1 h. Fluorescence microscopy and flow cytometry analysis of cancer cells (HeLa and MCF-7) treated with cancer cell-specific targeting ligand mAb 2C5-bearing liposomes showed enhanced cellular binding. Studies at low pH clearly confirmed the easy cleavability of the targeting ligand from the liposomes resulting in significantly less or virtually no cellular association.  相似文献   

2.
脂质体作为一种药物载体广泛应用于肿瘤药物输送中。配体修饰的靶向脂质体,其靶向配体分子在脂质体表面修饰的构象和密度等参数,对脂质体本身的特性及其体内的靶向效果,有很大的影响。但有关其中的具体相互关系,以及可能的最优条件,国内外文献都尚无定论。据此我们建立了多肽靶向脂质体表面配体修饰的分析方法,并通过影像学手段来研究不同靶向肽含量对脂质体在荷瘤裸鼠中的靶向行为的影响。首先采用孵育插入法将带有多肽的脂质分子插入脂质体表面,用分子筛色谱法分离修饰后的脂质体和未插入的多肽脂质,再用HPLC-ELSD定量各脂质成分,得到多肽靶向脂质体表面的靶向肽密度。而后将修饰有不同密度靶向多肽的荧光脂质体经荷瘤小鼠尾静脉注射,分别在给药前后各时间点对小鼠进行扫描,对扫描得到的图像进行处理并计算AUC、T1/2和MRT等相关药代动力学参数。结果表明,随着脂质体表面多肽密度的增加,即多肽密度大于1.298%的靶向脂质体,其肿瘤部位的荧光AUC、T1/2和MRT都较未修饰的隐形脂质体有所提高,显示其在肿瘤组织中的聚集量增多、停留时间延长,针对肿瘤细胞的特异性作用机制得以彰显。  相似文献   

3.
Controlled induction of phagocytosis in macrophages offers the ability to therapeutically regulate the immune system as well as improve delivery of chemicals or biologicals for immune processing. Maximizing particle uptake by macrophages through Fc receptor-mediated phagocytosis could lead to new delivery mechanisms in drug or vaccine development. Fc ligand density and particle size were examined independently and in combination in order to optimize and tune the phagocytosis of opsonized microparticles. We show the internalization efficiency of small polystyrene particles (0.5 µm to 2 µm) is significantly affected by changes in Fc ligand density, while particles greater than 2 µm show little correlation between internalization and Fc density. We found that while macrophages can efficiently phagocytose a large number of smaller particles, the total volume of phagocytosed particles is maximized through the non-specific uptake of larger microparticles. Therefore, larger microparticles may be more efficient at delivering a greater therapeutic payload to macrophages, but smaller opsonized microparticles can deliver bio-active substances to a greater percentage of the macrophage population. This study is the first to treat as independent variables the physical and biological properties of Fc density and microparticle size that initiate macrophage phagocytosis. Defining the physical and biological parameters that affect phagocytosis efficiency will lead to improved methods of microparticle delivery to macrophages.  相似文献   

4.
Coupling of a specific ligand to vaccines or drugs can be a powerful aid to route these compounds to a certain target cell population. However, if the targeted receptor is buried in a glycocalyx, binding of the ligand may be sterically hindered or even abolished, especially when the ligand is attached to bulky payloads. The antigen-transporting M cells that cover the gut-associated lymphoid tissue have a less pronounced glycocalyx than neighboring enterocytes. Such architectural differences might provide a possibility for targeting micro- or nanoparticulate vaccines to the mucosal immune system. To investigate the influence of the glycocalyx on the accessibility of cell surface receptors, we developed a system where a monolayer of ligand molecules is coupled in spatially aligned manner onto the surface of microparticles. On the basis of fluorescent carboxylate-modified particles of 1 micron diameter, different synthetic strategies were tested. Particles were first modified to display aldehyde functions on their surface, then protein ligands were coupled via Schiff base formation. The performance of the particles was tested on cultured mouse fibroblasts using the B subunit of cholera toxin as ligand and the plasma membrane glycolipid ganglioside G(M1) as receptor. Cholera toxin B subunit-coated microparticles generated by one of our synthetic pathways exhibited specific binding to fibroblasts which could be blocked with soluble cholera toxin B subunit. As particles as small as 50 nm and any proteinaceous ligand may be used, this system provides a versatile means for monitoring receptor accessibilities in vitro and in vivo.  相似文献   

5.
One method for improving cancer treatment is the use of nanoparticle drugs functionalized with targeting ligands that recognize receptors expressed selectively by tumor cells. In theory such targeting ligands should specifically deliver the nanoparticle drug to the tumor, increasing drug concentration in the tumor and delivering the drug to its site of action within the tumor tissue. However, the leaky vasculature of tumors combined with a poor lymphatic system allows the passive accumulation, and subsequent retention, of nanosized materials in tumors. Furthermore, a large nanoparticle size may impede tumor penetration. As such, the role of active targeting in nanoparticle delivery is controversial, and it is difficult to predict how a targeted nanoparticle drug will behave in vivo. Here we report in vivo studies for αvβ6-specific H2009.1 peptide targeted liposomal doxorubicin, which increased liposomal delivery and toxicity to lung cancer cells in vitro. We systematically varied ligand affinity, ligand density, ligand stability, liposome dosage, and tumor models to assess the role of active targeting of liposomes to αvβ6. In direct contrast to the in vitro results, we demonstrate no difference in in vivo targeting or efficacy for H2009.1 tetrameric peptide liposomal doxorubicin, compared to control peptide and no peptide liposomes. Examining liposome accumulation and distribution within the tumor demonstrates that the liposome, and not the H2009.1 peptide, drives tumor accumulation, and that both targeted H2009.1 and untargeted liposomes remain in perivascular regions, with little tumor penetration. Thus H2009.1 targeted liposomes fail to improve drug efficacy because the liposome drug platform prevents the H2009.1 peptide from both actively targeting the tumor and binding to tumor cells throughout the tumor tissue. Therefore, using a high affinity and high specificity ligand targeting an over-expressed tumor biomarker does not guarantee enhanced efficacy of a liposomal drug. These results highlight the complexity of in vivo targeting.  相似文献   

6.
The oral route remains the preferred route of administration to ensure patient satisfaction and compliance. However, new chemical entities may exhibit low bioavailability after oral administration because of poor stability within the gastrointestinal tract, poor solubility in gastrointestinal fluids, low mucosal permeability, and/or extensive first-pass metabolism. Consequently, these new drug substances cannot be further developed using conventional oral formulations. This issue is addressed by an innovative approach based on the entrapment of drug molecules in drug/carrier assembling systems. The carrier materials are lipids, naturally occurring polymers or synthetic polymers, which are considered as nontoxic and biocompatible materials. Drug entrapment is intended to protect drug substances against degradation by gastrointestinal fluids. Fine drug/carrier particle size ensures increased drug dissolution rates. Carriers and particle supramolecular organization can be designed to enhance drug absorption through the intestinal epithelium and lymphatic transport. Promising preclinical results have been obtained with model drugs like paclitaxel, insulin, calcitonin, or cyclosporin. Attention has focused on mucoadhesive carriers like chitosan that favor an intimate and extended contact between drugs and intestinal cells, thus enhancing absorption. Addition of ligands such as lectins improves intestinal drug absorption through specific binding of the carrier to intestinal cell carbohydrates. In conclusion, drug/carrier particulate systems are an attractive and exciting drug delivery strategy for highly potent drug substances unsuitable for oral use. Further evidence will determine whether this approach has marked therapeutic benefits over conventional drug formulations and is compatible with large-scale industrial production and stringent registration requirements. Producing highly effective particulate systems requiring low-complexity manufacturing processes is therefore an ongoing challenge.  相似文献   

7.
传统的肿瘤治疗方法因缺乏足够的靶向性而会产生严重的毒副作用。外泌体(exosome)是一种天然的纳米囊泡,参与细胞间的信息传递,并且作为药物递送载体具有出色的性能优势,包括低免疫原性、低毒性和能够穿越天然屏障等特点。然而以外泌体为载体的药物递送系统的靶向能力仍有不足。适配体(aptamer)是一类化学合成的单链核酸分子,具有分子质量小、易于修饰和免疫原性低等特点,可作为亲和性配体与靶向分子特异性结合。通过在外泌体表面修饰适配体,药物可以被精确递送到肿瘤细胞发生部位,从而实现对肿瘤的靶向治疗,提高肿瘤治疗效果,减少毒副作用。本篇综述将重点讨论适配体功能化外泌体药物靶向递送系统在各种肿瘤治疗方面的应用,并对其未来的挑战和机遇进行阐述。  相似文献   

8.
抗癌药物的毒副作用限制了其临床应用,纳米药物载体可实现药物在病灶部位的聚集而不影响正常组织,从而降低药物毒副作用.在药物载体表面修饰靶向配体,以提高药物载体主动靶向进入到细胞的能力,可有效地将药物释放到靶细胞,大大提高药效.核酸适配体(aptamer)作为一种新型的靶向分子,近几年已被运用到靶向药物传递的研究中.本文介绍了几种适配体靶向载药体系,如适配体-药物、适配体-脂质体、适配体-聚合物胶束、适配体-聚合物纳米颗粒、适配体-金属颗粒以及适配体-支化聚合物等载药体系,并对当前研究的热点以及存在的问题和不足进行了评述.  相似文献   

9.
作为药物递送载体,脂质体(LPs)由于免疫原性低、稳定性好、毒性低和成本低而被认为是有前途的纳米药物递送系统。然而,LPs的靶向递送效果并不理想,往往会对正常的机体细胞造成伤害,因此,如何优化LPs药物,使其具有靶向性仍然是当前研究的重点。本文结合近年来国内外相关研究进展,重点介绍了多肽、抗体、糖类、配体,以及核酸适配体等靶向修饰物对LPs功能的影响,并归纳总结了各种靶向修饰目前存在的优势与挑战,以期对LPs给药系统的进一步研究提供科学参考及新药研发提供理论依据。  相似文献   

10.
Nonviral gene delivery systems are amenable to forming colloidal particles with a wide range of physicochemical properties that include size, surface charge, and density and type of ligand presented. However, it is not known how to best design these particles without having a set of physicochemical design constraints that have been optimized for the intended gene delivery application. Here, a nanoparticle-based model delivery system is developed that can mimic the surface properties of nonviral gene delivery particles, and this model system is used to define design constraints that should be applied to next generation gene delivery particles. As a test case, a well-defined nanoparticle-based system is developed to guide the rational design of gene delivery to hepatocytes in the liver. The synthetic scheme utilizes monodisperse polystyrene particles and provides for variation of mean particle size and particle size distribution through variation in reaction conditions. The nanoparticles are PEGylated to provide stability in serum and also incorporate targeting ligands, e.g., galactose, at tunable densities. Four nanoparticles are synthesized from uniformly sized polystyrene beads specifically for the purpose of identifying design constraints to guide next generation gene delivery to the liver. These four nanoparticles are Gal-50 and Gal-140, that are galactosylated 50 and 140 nm nanoparticles, and MeO-50 and MeO-140, that are methoxy-terminated 50 and 140 nm nanoparticles. All four particles have the same surface charge, and Gal-50 and Gal-140 have the same surface galactose density. The availability of galactose ligands to receptor binding is demonstrated here by agglutination with RCA120.  相似文献   

11.
Recombinant adenovirus type 5 particles (AdCMVLuc) were labeled with two different bifunctional ligands capable of forming stable complexes with paramagnetic lanthanide ions. The number of covalently attached ligands varied between 630 and 1960 per adenovirus particle depending upon the chemical reactivity of the bifunctional ligand (NHS ester versus isothiocyanide), the amount of excess ligand added, and the reaction time. The bioactivity of each labeled adenovirus derivative, as measured by the ability of the virus to infect cells and express luciferase, was shown to be highly dependent upon the number of covalently attached ligands. This indicates that certain amino groups, likely on the surface of the adenovirus fiber protein where cell binding is known to occur, are critical for viral attachment and infection. Addition of (177)Lu3+ to chemically modified versus control viruses demonstrated a significant amount of nonspecific binding of (177)Lu3+ to the virus particles that could not be sequestered by addition of excess DTPA. Thus, it became necessary to implement a prelabeling strategy for conjugation of preformed lanthanide ligand chelates to adenovirus particles. Using preformed Tm3+- L2, a large number of chelates having chemical exchange saturation transfer (CEST) properties were attached to the surface residues of AdCMVLuc without nonspecific binding of metal ions elsewhere on the virus particle. The potential of such conjugates to act as PARACEST imaging agents was tested using an on-resonance WALTZ sequence for CEST activation. A 12% decrease in bulk water signal intensity was observed relative to controls. This demonstrates that viral particles labeled with PARACEST-type imaging agents can potentially serve as targeted agents for molecular imaging.  相似文献   

12.
Desai KG 《AAPS PharmSciTech》2005,6(2):E202-E208
Summary and Conclusions  The HACS/pectin blend microparticles were prepared by spray-drying technique to obtain effective targeted drug release to the colon. The mean particle size of the micro-particles (plain and blend) that were prepared in the present study was between 5.8 and 7.3 μm. The microparticles were positively charged (ζ potential was in the range of 20.3 to 30.8), and the encapsulation efficiency was between 80.1% and 94.7%. The blending of HACS with pectin improved the encapsulation efficiency and decreased the drug dissolution in the gastric condition (pH 1.2) from the pectin-based microparticles. Results of the drug release study indicated that the colonic-controlled drug delivery could be obtained from spray-dried HACS/pectin blend microparticles, and the drug release mechanism was found to be by diffusion or erosion or a combination of both. Published: September 30, 2005.  相似文献   

13.
The treatment of inflammatory bowel disease (IBD) recently has been revolutionized by the introduction of protein-based biologic therapies. However, biologic therapy is complicated by the requirement for administration with a needle, systemic side effects, and high cost. Particulate drug delivery systems have been shown to deliver drugs locally to the intestinal mucosa via oral administration. However, these systems have been largely unexplored for the delivery of biologics due to harsh particle fabrication conditions and the tendency of many particulate formulations to dissolve in the acidic upper GI tract. We have, therefore, fabricated an inexpensive and non-toxic novel microparticle capable of encapsulating proteins. We establish that the particle retains its contents at acidic pH and releases them at neutral pH. We also demonstrate particulate encapsulation of interleukin-10 (IL-10), a protein relevant to the treatment of IBD, at an encapsulation efficiency of 14.3 percent. Such a vehicle is promising for its oral route of administration and potential to decrease side effects and increase potency of biologics.  相似文献   

14.
Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.  相似文献   

15.
In mucosal tissues, epithelial M cells capture and transport microbes across the barrier to underlying immune cells. Previous studies suggested that high affinity ligands targeting M cells may be used to deliver mucosal vaccines; here, we show that particle composition and dispersion buffer ionic strength can independently influence their uptake in vivo. First, addition of a poloxamer 188 to nanoparticle formulations increased uptake of intranasally administered nanoparticles in vivo, but the effect was dependent on the presence of the M cell-targeting ligand. Second, solvent ionic strength is known to effect electrostatic interactions; accordingly, reduced ionic strength increased the electrostatic potential between the epithelium and the particles. Interestingly, below a critical ionic strength, intranasal particle uptake in vivo significantly was increased even when controlled for osmolarity. Similar results were obtained for uptake of bacterial particles. Surprisingly, at low ionic strength, the specific enhancement effect by the targeting peptide was negligible. Modeling of the electrostatic forces predicted that the enhancing effects of the M cell-targeting ligand only are enabled at high ionic strength, as particle electrostatic forces are reduced through Debye screening. Thus, electrostatic forces can have a dramatic effect on the in vivo M cell particle uptake independent of the action of targeting ligands. Examination of these forces will be helpful to optimizing mucosal vaccine and drug delivery.  相似文献   

16.
A series of novel aryl-substituted triazolyl d-galactosamine derivatives was synthesized as ligands for the carbohydrate recognition domain of the major subunit H1 (H1-CRD) of the human asialoglycoprotein receptor (ASGP-R). The compounds were biologically evaluated with a newly developed competitive binding assay, surface plasmon resonance and by a competitive NMR binding experiment. With compound 1b, a new ligand with a twofold improved affinity to the best so far known d-GalNAc was identified. This small, drug-like ligand can be used as targeting device for drug delivery to hepatocytes.  相似文献   

17.
The objective of this study was to investigate the influence of processing parameters on the morphology, porosity, and crystallinity of polymeric polyethylene glycol (PEG) microparticles by spray freezing into liquid (SFL), a new particle engineering technology. Processing parameters investigated were the viscosity and flow rate of the polymer solution, nozzle diameter, spray time, pressure, temperature, and flow rate of the cryogenic liquid. By varying the processing parameters and feed composition, atomization and heat transfer mechanisms were modified resulting in particles of different size distribution, shape, morphology, density, porosity, and crystallinity. Median particle diameter (M50) varied from 25 μm to 600 μm. Particle shape was spherical or elongated with highly irregular surfaces. Granule density was between 0.5 and 1.5 g/mL. In addition to producing particles of pure polymer, drug particles were encapsulted in polymeric microparticles. The encapsulation efficiency of albuterol sulfate was 96.0% with a drug loading of 2.4%, indicating that SFL is useful for producing polymeric microparticles for drug delivery applications. It was determined that the physicochemical characteristics of model polymeric microparticles composed of PEG could be modified for use as a drug delivery carrier.  相似文献   

18.
In vitro studies were performed to characterize the relative performance of candidate receptors to target microparticles to inflammatory markers on vascular endothelium. To model the interactions of drug-bearing microparticles or imaging contrast agents with the vasculature, 6 micron polystyrene particles bearing antibodies, peptides, or carbohydrates were perfused over immobilized E- or P-selectin in a flow chamber. Microparticles conjugated with HuEP5C7.g2 (HuEP), a monoclonal antibody (mAb) specific to E- and P-selectin, supported leukocyte-like rolling and transient adhesion at venular shear rates. In contrast, microparticles conjugated with a higher affinity mAb specific for P-selectin (G1) were unable to form bonds at venular flow rates. When both HuEP and G1 were conjugated to the microparticle, HuEP supported binding to P-selectin in flow which allowed G1 to form bonds leading to stable adhesion. While the microparticle attachment and rolling performance was not as stable as that mediated by the natural ligands P-selectin Glycoprotein Ligand-1 or sialyl Lewis(x), HuEP performed significantly better than any previously characterized mAb in terms of mediating microparticle binding under flow conditions. HuEP may be a viable alternative to natural ligands to selectins for targeting particles to inflamed endothelium.  相似文献   

19.
Hydrogen bonds between polarized atoms play a crucial role in protein interactions and are often used in drug design, which usually neglects the potential of C-H...O hydrogen bonds. The 1.4 A resolution crystal structure of the ligand binding domain of the retinoic acid receptor RARgamma complexed with the retinoid SR11254 reveals several types of C-H...O hydrogen bonds. A striking example is the hydroxyl group of the ligand that acts as an H bond donor and acceptor, leading to a synergy between classical and C-H...O hydrogen bonds. This interaction introduces both specificity and affinity within the hydrophobic ligand pocket. The similarity of intraprotein and protein-ligand C-H...O interactions suggests that such bonds should be considered in rational drug design approaches.  相似文献   

20.
Increasing valence can enhance the ability of molecular targeting constructs to bind specifically to targeted cells for drug delivery. Here, we mathematically model the length and flexibility of a linker used to conjoin two peptide ligands of a divalent targeting construct and investigate the influence both on binding avidity and specificity. Four different models are used to approximate varying degrees of linker flexibility (random coil, rigid rod, jointed rods, and combined rod-random coil) and for each linker a binding enhancement factor (VR) is derived that quantifies the increased rate of each construct's second binding event over the first. Results indicate that the moderately flexible models can best reproduce experimentally measured avidities. Also, the magnitude of VR, in conjunction with receptor density and ligand concentration, significantly influences the achievable specificity. Thus, the model elucidates important considerations in designing multivalent targeting constructs for use in delivery of targeted therapy or imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号