首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Evidence from multiple systems indicates that vesicle SNARE (soluble NSF attachment receptor) proteins are involved in synaptic vesicle endocytosis, although their exact action at the level of single vesicles is unknown. Here we interrogate the role of the main synaptic vesicle SNARE mediating fusion, synaptobrevin-2 (also called VAMP2), in modulation of single synaptic vesicle retrieval. We report that in the absence of synaptobrevin-2, fast and slow modes of single synaptic vesicle retrieval are impaired, indicating a role of the SNARE machinery in coupling exocytosis to endocytosis of single synaptic vesicles. Ultrafast endocytosis was impervious to changes in the levels of synaptobrevin-2, pointing to a separate molecular mechanism underlying this type of recycling. Taken together with earlier studies suggesting a role of synaptobrevin-2 in endocytosis, these results indicate that the machinery for fast synchronous release couples fusion to retrieval and regulates the kinetics of endocytosis in a Ca2+-dependent manner.  相似文献   

2.
Synaptobrevin-2 (VAMP-2), the major SNARE protein of synaptic vesicles, is required for fast calcium-triggered synaptic-vesicle exocytosis. Here we show that synaptobrevin-2 is also essential for fast synaptic-vesicle endocytosis. We demonstrate that after depletion of the readily releasable vesicle pool, replenishment of the pool is delayed by knockout of synaptobrevin. This delay was not from a loss of vesicles, because the total number of pre-synaptic vesicles, docked vesicles and actively recycling vesicles was unaffected. However, altered shape and size of the vesicles in synaptobrevin-deficient synapses suggests a defect in endocytosis. Consistent with such a defect, the stimulus-dependent endocytosis of horseradish peroxidase and fluorescent FM1-43 were delayed, indicating that fast vesicle endocytosis may normally be nucleated by a SNARE-dependent coat. Thus, synaptobrevin is essential for two fast synapse-specific membrane trafficking reactions: fast exocytosis for neurotransmitter release and fast endocytosis that mediates rapid reuse of synaptic vesicles.  相似文献   

3.
Syntaxin-1是一种多结构域蛋白,通过与synaptobrevin-2和SNAP-25形成SNARE复合体调节囊泡融合.然而,syntaxin-1在突触形成过程中是否发挥作用,目前尚不清楚.本研究显示syntaxin-1的表达水平与突触形成过程高度相关.Syntaxin-1的R151A和I155A突变影响其在突触形成中的促进作用,而Habc结构域或跨膜结构域在突触形成中无显著作用.结果表明,syntaxin-1通过激活突触囊泡释放来加速突触的形成.  相似文献   

4.
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1 adopts a closed conformation when bound to Munc18-1, preventing binding to synaptobrevin-2 and SNAP-25 to form the ternary SNARE complex. Although it is known that the MUN domain of Munc13-1 catalyzes the transition from the Munc18-1/syntaxin-1 complex to the SNARE complex, the molecular mechanism is unclear. Here, we identified two conserved residues (R151, I155) in the syntaxin-1 linker region as key sites for the MUN domain interaction. This interaction is essential for SNARE complex formation in vitro and synaptic vesicle priming in neuronal cultures. Moreover, this interaction is important for a tripartite Munc18-1/syntaxin-1/MUN complex, in which syntaxin-1 still adopts a closed conformation tightly bound to Munc18-1, whereas the syntaxin-1 linker region changes its conformation, similar to that of the LE mutant of syntaxin-1 when bound to Munc18-1. We suggest that the conformational change of the syntaxin-1 linker region induced by Munc13-1 initiates ternary SNARE complex formation in the neuronal system.  相似文献   

5.
Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly.  相似文献   

6.
Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is critical to elucidate the mechanisms involved. In this study, we show that lentiviral expression of Munc18-1 rescues abrogation of release in Munc18-1 knockout mice. We describe point mutations in Munc18-1 that preserve tight binding to closed syntaxin-1 but markedly disrupt Munc18-1 binding to SNARE complexes containing open syntaxin-1. Lentiviral rescue experiments reveal that such disruption selectively impairs synaptic vesicle priming but not Ca2+-triggered fusion of primed vesicles. We also find that Munc18-1 and complexin-1 bind simultaneously to SNARE complexes. These results suggest that Munc18-1 binding to SNARE complexes mediates synaptic vesicle priming and that the resulting primed state involves a Munc18-1–SNARE–complexin macromolecular assembly that is poised for Ca2+ triggering of fusion.  相似文献   

7.
Trans SNARE complex assembly is an essential step in Ca2+-dependent membrane fusion, although the SNARE proteins do not bind Ca2+ ions. Studies to evaluate how the Ca2+sensor protein calmodulin might regulate this process led to the identification of a consensus calmodulin binding motif in the v-SNARE VAMP2. This sequence (residues 77-90) is situated precisely C-terminal to the tetanus toxin (TeNT) and botulinum B toxin cleavage site (76Q-F77) close to the transmembrane anchor. The same domain also binds acidic phospholipids and Ca2+/calmodulin or lipid binding are mutually exclusive. Directed mutagenesis of basic or hydrophobic residues within this motif reduced interactions with both Ca2+/calmodulin and phospholipids to a similar extent. The effects of these mutations on Ca2+-dependent exocytosis was explored using an hGH release assay in permeabilized pheochromocytoma PC12 cells. Treatment of cells with tetanus toxin (TeNT), which cleaves endogenous VAMP, abolished secretion. Secretion could be re-established by transfecting TeNT-resistant VAMP with mutations (Q76V,F77W) in the cleavage site. However rescue of exocytosis was abolished when additional mutations (K83A,K87V or W89A,W90A) were introduced that inhibited calmodulin and phospholipid binding to VAMP. Thus calmodulin and/or phospholipid binding to the membrane proximal region of VAMP is required for Ca2+-dependent exocytosis. We speculate that interactions between cis phospholipids at the vesicle surface and the membrane proximal region of VAMP inhibits SNARE complex assembly. Displacement of these interactions by Ca2+/calmodulin may promote SNARE complex assembly and lead to trans interactions between the membrane proximal region of VAMP and phospholipids in the plasma membrane.  相似文献   

8.
Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)–dependent exocytosis pathway at an intermediate “cocked” state, from which fusion can be triggered by Ca2+. It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin–SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca2+-triggered C-terminal assembly and membrane fusion.  相似文献   

9.
SNAP receptor (SNARE) and Sec1/Munc18 (SM) proteins are required for all intracellular membrane fusion events. SNAREs are widely believed to drive the fusion process, but the function of SM proteins remains unclear. To shed light on this, we screened for dominant-negative mutants of yeast Sec1 by random mutagenesis of a GAL1-regulated SEC1 plasmid. Mutants were identified on the basis of galactose-inducible growth arrest and inhibition of invertase secretion. This effect of dominant-negative sec1 was suppressed by overexpression of the vesicle (v)-SNAREs, Snc1 and Snc2, but not the target (t)-SNAREs, Sec9 and Sso2. The mutations isolated in Sec1 clustered in a hotspot within domain 3a, with F361 mutated in four different mutants. To test if this region was generally involved in SM protein function, the F361-equivalent residue in mammalian Munc18-1 (Y337) was mutated. Overexpression of the Munc18-1 Y337L mutant in bovine chromaffin cells inhibited the release kinetics of individual exocytosis events. The Y337L mutation impaired binding of Munc18-1 to the neuronal SNARE complex, but did not affect its binary interaction with syntaxin1a. Taken together, these data suggest that domain 3a of SM proteins has a functionally important role in membrane fusion. Furthermore, this approach of screening for dominant-negative mutants in yeast may be useful for other conserved proteins, to identify functionally important domains in their mammalian homologs.  相似文献   

10.
Myelin membrane synthesis in the CNS by oligodendrocytes (OLs) involves directed intracellular transport and targeting of copious amounts of specialized lipids and proteins over a relatively short time span. As in other plasma membrane-directed fusion, this process is expected to use specific trafficking and vesicle fusion proteins characteristic of the SNARE model. We have investigated the developmental expression of SNARE proteins in highly enriched primary cultures of OLs at discrete stages of differentiation. VAMP-2/synaptobrevin-2, syntaxin-2 and -4, nsec-1/munc-18-1, Rab3a, synaptophysin, and synapsin were expressed. During differentiation, expression of the vesicular SNARE VAMP-2, the small GTP-binding protein Rab3a, and the target SNARE syntaxin-4 were up-regulated. VAMP-2 and Rab3 proteins detected immunocytochemically in cultured OLs were localized within the developing process network; in situ anti-VAMP-2 antibody stained the perikarya of rows of cells with the distribution and appearance of OLs. We discuss the potential involvement of SNARE complex proteins in a plasma membrane-directed transport mechanism targeting nascent myelin vesicles to the forming myelin sheath.  相似文献   

11.
Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes.  相似文献   

12.
The molecular mechanisms underlying "kiss and run" or "cavicapture" exocytosis of dense core secretory vesicles are presently unclear. Although dynamin-1 has previously been implicated in the recapture process in neurons, the recruitment of this fission protein to a single exocytosing vesicle has not been examined in real time during peptide release from pancreatic beta-cells. Imaged simultaneously in clonal insulin-secreting cells by dual color total internal reflection fluorescence microscopy, monomeric red fluorescent protein (mRFP)-tagged neuropeptide Y and green fluorescent protein (GFP)-tagged synaptotagmin-1 or synaptobrevin-2 rapidly diffused from sites of exocytosis, whereas the vesicle membrane protein phogrin and tissue plasminogen activator (tPA) were retained, consistent with fusion pore closure. Vesicle recovery frequently involved the recruitment of enhanced GFP-tagged dynamin-1, and GTPase-defective dynamin-1(K44E) increased the dwell time of tPA-mRFP at the plasma membrane. By contrast, recruitment of GFP chimeras of clathrin, epsin, and amphiphysin was not observed. Expression of dynamin-1(K535A), mutated in the pleckstrin homology domain, caused the apparent full fusion of vesicles, as reported by the additional release of tPA-mRFP (15-nm diameter) and enhanced GFP-tagged phogrin. We conclude that re-uptake of vesicles after peptide release by cavicapture corresponds to a novel form of endocytosis in which dynamin-1 stabilizes and eventually closes the fusion pore, with no requirement for "classical" endocytosis for retreat from the plasma membrane.  相似文献   

13.
Exocytosis - syntaxin - synaptobrevin - SNARE synaptic vesicle The lamprey giant reticulospinal synapse can be used to manipulate the molecular machinery of synaptic vesicle exocytosis by presynaptic microinjection. Here we test the effect of disrupting the function of the SNARE protein SNAP-25. Polyclonal SNAP-25 antibodies were shown in an in vitro assay to inhibit the binding between syntaxin and SNAP-25. When microinjected presynaptically, these antibodies produced a potent inhibition of the synaptic response. Ba2+ spikes recorded in the presynaptic axon were not altered, indicating that the effect was not due to a reduced presynaptic Ca2+ entry. Electron microscopic analysis showed that synaptic vesicle clusters had a similar organization in synapses of antibody-injected axons as in control axons, and the number of synaptic vesicles in apparent contact with the presynaptic plasma membrane was also similar. Clathrin-coated pits, which normally occur at the plasma membrane around stimulated synapses, were not detected after injection of SNAP-25 antibodies, consistent with a blockade of vesicle cycling. Thus, SNAP-25 antibodies, which disrupt the interaction with syntaxin, inhibit neurotransmitter release without affecting the number of synaptic vesicles at the plasma membrane. These results provide further support to the view that the formation of SNARE complexes is critical for membrane fusion, but not for the targeting of synaptic vesicles to the presynaptic membrane.  相似文献   

14.
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.  相似文献   

15.
Synaptotagmin I (Syt I), an evolutionarily conserved integral membrane protein of synaptic vesicles, is now known to regulate Ca2+-dependent neurotransmitter release. Syt I protein should undergo several post-translational modifications before maturation and subsequent functioning on synaptic vesicles (e.g. N-glycosylation and fatty acylation in vertebrate Syt I), because the apparent molecular weight of Syt I on synaptic vesicles (mature form, 65,000) was much higher than the calculated molecular weight (47,400) predicted from the cDNA sequences both in vertebrates and invertebrates. Common post-translational modification(s) of Syt I conserved across phylogeny, however, have never been elucidated. In the present study, I discovered that dithreonine residues (Thr-15 and Thr-16) at the intravesicular domain of mouse Syt I are post-translationally modified by a complex form of O-linked sugar (i.e. the addition of sialic acids) in PC12 cells and that the O-glycosylation of Syt I in COS-7 cells depends on the coexpression of vesicle-associated membrane protein-2 (VAMP-2)/synaptobrevin. I also showed that a transmembrane domain of Syt I directly interacts with isolated VAMP-2, but not VAMP-2, in the heterotrimeric SNARE (SNAP receptor) complex (vesicle SNARE, VAMP-2, and two target SNAREs, syntaxin IA and SNAP-25). Since di-Thr or di-Ser residues are often found at the intravesicular domain of invertebrate Syt I, and VAMP-dependent O-glycosylation was also observed in squid Syt expressed in COS-7 cells, I propose that VAMP-dependent O-glycosylation of Syt I is a common modification during evolution and may have important role(s) in synaptic vesicle trafficking.  相似文献   

16.
Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is constitutively active. Potential regulators such as calmodulin or synaptophysin do not affect SNARE activity. Substitution or deletion of residues in the linker connecting the SNARE motif and transmembrane region did not alter the kinetics of SNARE complex assembly or of SNARE-mediated fusion of liposomes. Remarkably, deletion of C-terminal residues of the SNARE motif strongly reduced fusion activity, although the overall stability of the complexes was not affected. We conclude that although complete zippering of the SNARE complex is essential for membrane fusion, the structure of the adjacent linker domain is less critical, suggesting that complete SNARE complex assembly not only connects membranes but also drives fusion.  相似文献   

17.
The topology of a SNARE complex bridging two docked vesicles could act as a mechanical couple to do work on the lipid bilayer resulting in fusion. To test this, we prepared a series of modified SNARE proteins and determined their effects on SNARE-dependent membrane fusion. When two helix-breaking proline residues are introduced into the juxtamembrane region of VAMP, there is little or no effect on fusion, and the same change in syntaxin 1A only reduced the extent and rate of fusion by half. The insertion of a flexible linker between the transmembrane domain and the conserved coiled-coil domain only moderately affected fusion; however, fusion efficiency systematically decreased with increasing length of the linker. Together, these results rule out a requirement for helical continuity and suggest that distance is a critical factor for membrane fusion.  相似文献   

18.
The expression of SNAP-25 fused to green fluorescent protein (GFP) has been instrumental in demonstrating SNARE role in exocytosis. The wild-type GFP–SNAP-25 and a Δ9 form, product of botulinum neurotoxin A activity, the main ingredient in the BOTOX preparation, were employed here to study SNARE implication in vesicle mobility and fusion in cultured bovine chromaffin cells, a neuroendocrine exocytotic model. Using total internal reflection fluorescent microscopy, we have identified membrane microdomains of 500–600 nm diameter that contain both SNAP-25 and syntaxin-1 and associate with synaptobrevin-2. Interestingly, while the SNAP-25 Δ9 formed similar clusters, they displayed increased mobility both laterally and in the axis perpendicular to the plasmalemma, and this correlates with the enhanced dynamics of associated chromaffin granules. SNARE cluster-enhanced motion is reversed by elevation of the intracellular calcium level. Furthermore, single vesicle fusion was unlikely in the highly mobile vesicles present in the cells expressing SNAP-25 Δ9, which, in addition, displayed in average slower fusion kinetics. Consequently, SNARE cluster dynamics is a new aspect to consider when determining the factors contributing to the mobility of the vesicles in close vicinity to the plasma membrane and also the probability of exocytosis of this granule population.  相似文献   

19.
The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca(2+) sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a cytoplasmic domain largely comprised of two C2 domains designated C2A and C2B. We have determined how deep the Ca(2+)-binding loops of Ca(2+).C2A penetrate into the lipid bilayer and report mutations in synaptotagmin that can uncouple membrane penetration from Ca(2+)-triggered interactions with the SNARE complex. To determine whether C2A penetrates into the vesicle ("cis") or plasma ("trans") membrane, we reconstituted a fragment of synaptotagmin that includes the membrane-spanning and C2A domain (C2A-TMR) into proteoliposomes. Kinetics experiments revealed that cis interactions are rapid (< or =500 micros). Binding in the trans mode was distinguished by the slow diffusion of trans target vesicles. Both modes of binding were observed, indicating that the linker between the membrane anchor and C2A domain functions as a flexible tether. C2A-TMR assembled into oligomers via a novel N-terminal oligomerization domain suggesting that synaptotagmin may form clusters on the surface of synaptic vesicles. This novel mode of clustering may allow for rapid Ca(2+)-triggered oligomerization of the protein via the membrane distal C2B domain.  相似文献   

20.
Membrane fusion is essential for eukaryotic life, requiring SNARE proteins to zipper up in an α‐helical bundle to pull two membranes together. Here, we show that vesicle fusion can be suppressed by phosphorylation of core conserved residues inside the SNARE domain. We took a proteomics approach using a PKCB knockout mast cell model and found that the key mast cell secretory protein VAMP8 becomes phosphorylated by PKC at multiple residues in the SNARE domain. Our data suggest that VAMP8 phosphorylation reduces vesicle fusion in vitro and suppresses secretion in living cells, allowing vesicles to dock but preventing fusion with the plasma membrane. Markedly, we show that the phosphorylation motif is absent in all eukaryotic neuronal VAMPs, but present in all other VAMPs. Thus, phosphorylation of SNARE domains is a general mechanism to restrict how much cells secrete, opening the door for new therapeutic strategies for suppression of secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号