首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Borst SE  Snellen HG  Lai HL 《Life sciences》2000,67(2):165-174
Although the glucose-lowering properties of metformin are well-established, its effects on glucose metabolism in skeletal muscle have not been clearly defined. We tested the effects of metformin in young adult male Sprague-Dawley rats, which have a documented reduced response to insulin in skeletal muscle. Rats were treated with metformin for 20 days (320 mg/kg/day) in the drinking water. During this period, metformin completely prevented the increase in food intake and decreased adiposity by 30%. Metformin also reduced insulin secretion by 37% following an intra-peritoneal injection of glucose. Finally, metformin enhanced transport of [3H]-2-deoxyglucose in isolated strips of soleus muscle. Metformin substantially increased insulin-stimulated transport, while having no effect on basal transport. In control rats, a maximal concentration of insulin stimulated transport 77% above basal. In metformin-treated rats, insulin stimulated transport 206% above basal. We conclude that in the Sprague-Dawley rat model, metformin causes a significant increase in insulin-responsiveness.  相似文献   

2.
Administration of growth hormone (GH) increases muscle mass in F344 x BN rats, but not in Sprague-Dawley (S-D) rats. S-D rats are insulin-resistant and insulin responsiveness is required for the anabolic actions of GH. We hypothesized that correction of insulin resistance with metformin might also restore anabolic effects of GH. Treatment with GH (0.25 or 1.0 mg/kg twice daily for 9 days) had limited anabolic effects, reducing weight gain by 14%, increasing muscle glycogen content by 40% and increasing exercise capacity by 24%, but failing to increase muscle mass or to reduce fat mass. GH also impaired insulin responsiveness and increased visceral fat TNF content of visceral fat by 77%. Metformin enhanced insulin responsiveness in skeletal muscle, but failed to enhance anabolic effects of GH. Rats aged 14 weeks were treated for 21 days with metformin (320 mg/kg/day) and for the last 9 days, with GH (0.25 mg/kg, twice daily). Metformin caused a 2.3-fold increase in insulin-stimulated muscle glucose transport and a 20% reduction in muscle fatty acid oxidation, indicating increased glucose utilization. However, metformin did not augment GH-induced weight reduction. Metformin decreased visceral fat by 22% and subcutaneous fat by 20%, but no decreases were observed in the GH/metformin group. GH increased muscle glycogen by 40%, but the effect was reversed by metformin. VO(2max) was increased 24% by GH and 17% by metformin, but was not elevated in the GH/metformin group. GH increased TNF in visceral fat and the effect was augmented by metformin (144% increase). We conclude that metformin enhances some aspects of insulin responsiveness, but does not enhance anabolic responses to GH. The latter may, in part, be explained by the failure of metformin to prevent GH-induced elevation of TNF in visceral fat.  相似文献   

3.
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.  相似文献   

4.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

5.
Between 7 and 14 weeks of age, male Sprague-Dawley rats develop a greater than 50% loss in insulin-stimulated glucose transport in skeletal muscle. We treated rats aged 14 weeks with the beta-3 adrenergic agonist CL316,243 (1 mg/kg/day by minipump for 14 days). Treatment resulted in a 56% reduction in visceral fat (P < 0.05). Muscle mass and body weight were unchanged. In strips of soleus muscle isolated from rats treated with CL316,243, basal transport of [(3)H]-2-deoxyglucose (2-DOG) was unchanged (105.8 +/- 7.5 nmol/g/min for vehicle vs 122.0 +/- 8.7 for CL316,243). However, in rats treated with CL316,243, the increase in 2-DOG transport in response to a maximal concentration of insulin was substantially increased (55.5 +/- 13.1 nmol/g/min for vehicle vs 102.4 +/- 13.5 for CL316,243, P < 0.03). CL 316,243 caused no significant changes in fasting glucose, insulin, or free fatty acids. Treatment of soleus muscle strips in vitro with CL316,243 (either 0.1 nM or 1.0 nM for 120 min at 37 degrees C) had no effect either on basal 2-DOG transport or on insulin-stimulated transport. We conclude that the CL316,243 causes a reduction in visceral fat and a reversal of muscle insulin resistance. The effect CL 316,243 on muscle insulin responses appears to be indirect, as it did not occur in vitro.  相似文献   

6.
Male heterozygous TG(mREN2)27 rats (TGR) overexpress a murine renin transgene, display marked hypertension, and have insulin resistance of skeletal muscle glucose transport and insulin signaling. We have shown previously that voluntary exercise training by TGR improves insulin-mediated skeletal muscle glucose transport (Kinnick TR, Youngblood EB, O'Keefe MP, Saengsirisuwan V, Teachey MK, and Henriksen EJ. J Appl Physiol 93: 805-812, 2002). The present study evaluated whether this training-induced enhancement of muscle glucose transport is associated with upregulation of critical insulin signaling elements, including insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3. TGR remained sedentary or ran spontaneously in activity wheels for 6 wk, averaging 7.1 +/- 0.8 km/day by the end of week 3 and 4.3 +/- 0.5 km/day over the final week of training. Exercise training reduced total abdominal fat by 20% (P < 0.05) in TGR runners (2.64 +/- 0.01% of body weight) compared with sedentary TGR controls (3.28 +/- 0.01%). Insulin-stimulated (2 mU/ml) glucose transport activity in soleus muscle was 36% greater in TGR runners compared with sedentary TGR controls. However, the protein expression and functionality of tyrosine phosphorylation of insulin receptor and IRS-1, IRS-1 associated with the p85 regulatory subunit of phosphatidylinositol 3-kinase, and Ser473 phosphorylation of Akt were not altered by exercise training. Only insulin-stimulated glycogen synthase kinase-3beta Ser9 phosphorylation was increased (22%) by exercise training. These results indicate that voluntary exercise training in TGR can enhance insulin-mediated glucose transport in skeletal muscle, as well as reduce total abdominal fat mass. However, this adaptive response in muscle occurs independently of modifications in the proximal elements of the insulin signaling cascade.  相似文献   

7.
Hypertension is often accompanied by insulin resistance of skeletal muscle glucose transport. The male heterozygous TG(mREN2)27 rat, which harbors a mouse transgene for renin, displays local elevations in the renin-angiotensin system and exhibits markedly elevated systolic blood pressure (SBP). The present study was undertaken to characterize insulin-stimulated skeletal muscle glucose transport in male heterozygous TG(mREN2)27 rats and to evaluate the effect of voluntary exercise training on SBP and skeletal muscle glucose transport. Compared with normotensive Sprague-Dawley rats, TG(mREN2)27 rats displayed a 53% elevation (P < 0.05) in SBP, a twofold increase in plasma free fatty acid levels, and an exaggerated insulin response during an oral glucose tolerance test. Moreover, insulin-mediated glucose transport (2-deoxyglucose uptake) in isolated epitrochlearis and soleus muscles of TG(mREN2)27 animals was 33 and 43% less, respectively, than in Sprague-Dawley controls. TG(mREN2)27 rats ran voluntarily for 6 wk and achieved daily running distances of 6-7 km over the final 3 wk. Training caused a 36% increase in peak aerobic capacity and a 16% reduction in resting SBP. Fasting plasma insulin (21%) and free fatty acid (34%) levels were reduced in the trained TG(mREN2)27 rats. Whole body glucose tolerance was improved in the trained TG(mREN2)27 rats and was associated with increases of 39 and 50% in insulin-mediated glucose transport in epitrochlearis and soleus muscles, respectively. Whole muscle GLUT-4 protein was increased in the soleus (23%), but not in the epitrochlearis, of trained TG(mREN2)27 rats. These data indicate that the male heterozygous TG(mREN2)27 rat is a model of both hypertension and insulin resistance. Importantly, both of these defects can be beneficially modified by voluntary exercise training.  相似文献   

8.
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).  相似文献   

9.
A role for elevated glycogen synthase kinase-3 (GSK-3) activity in the multifactorial etiology of insulin resistance is now emerging. However, the utility of specific GSK-3 inhibition in modulating insulin resistance of skeletal muscle glucose transport is not yet fully understood. Therefore, we assessed the effects of novel, selective organic inhibitors of GSK-3 (CT-98014 and CT-98023) on glucose transport in insulin-resistant muscles of Zucker diabetic fatty (ZDF) rats. Incubation of type IIb epitrochlearis and type I soleus muscles from ZDF rats with CT-98014 increased glycogen synthase activity (49 and 50%, respectively, P < 0.05) but did not alter basal glucose transport (2-deoxyglucose uptake). In contrast, CT-98014 significantly increased the stimulatory effects of both submaximal and maximal insulin concentrations in epitrochlearis (37 and 24%) and soleus (43 and 26%), and these effects were associated with increased cell-surface GLUT4 protein. Lithium enhanced glycogen synthase activity and both basal and insulin-stimulated glucose transport in muscles from ZDF rats. Acute oral administration (2 x 30 mg/kg) of CT-98023 to ZDF rats caused elevations in GSK-3 inhibitor concentrations in plasma and muscle. The glucose and insulin responses during a subsequent oral glucose tolerance test were reduced by 26 and 34%, respectively, in the GSK-3 inhibitor-treated animals. Thirty minutes after the final GSK-3 inhibitor treatment, insulin-stimulated glucose transport was significantly enhanced in epitrochlearis (57%) and soleus (43%). Two hours after the final treatment, insulin-mediated glucose transport was still significantly elevated (26%) only in the soleus. These results indicate that specific inhibition of GSK-3 enhances insulin action on glucose transport in skeletal muscle of the insulin-resistant ZDF rat. This unique approach may hold promise as a pharmacological treatment against insulin resistance of skeletal muscle glucose disposal.  相似文献   

10.
Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser(645), Ser(649), Ser(653), Ser(657)) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. "Insulin resistance" is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.  相似文献   

11.
We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation. Insulin-stimulated glucose transport was less affected (22% of control). The decrease in glycogen synthesis was accompanied by decreased glycogen synthase (GS) activity and increased GS phosphorylation. When including 2 mM AICAR in the last hour of the 5-h incubation with palmitate, the inhibitory effect of palmitate on insulin-stimulated glycogen synthesis and glucose transport was eliminated. This effect of AICAR was accompanied by activation of AMPK. Importantly, AMPK inhibition was able to prevent this effect. Neither treatment affected total glycogen content. However, glucose 6-phosphate was increased after inclusion of AICAR, indicating increased influx of glucose. No effect of AICAR on the inhibited insulin-stimulated GS activity or increased GS phosphorylation by palmitate could be detected. Thus the mechanism by which AMPK activation ameliorates the lipid-induced insulin resistance probably involves induction of compensatory mechanisms overriding the insulin resistance. Our results emphasize AMPK as a promising molecular target for treatment of insulin resistance.  相似文献   

12.
Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle insulin resistance in female Zucker diabetic fatty rats (ZDF), a high-fat (HF) diet-induced model of diabetes. Lean and ZDF rats consumed control or HF diet (48 kcal %fat) alone or with Met (500 mg/kg), with treadmill exercise, or with both exercise and Met interventions for 8 wk. HF-fed ZDF rats developed hyperglycemia (mean: 24.4 +/- 2.1 mM), impairments in muscle insulin-stimulated glucose transport, increases in the FA transporter FAT/CD36, and increases in total ceramide and DAG content. The development of hyperglycemia was significantly attenuated with all interventions, as was skeletal muscle FAT/CD36 abundance and ceramide and DAG content. Interestingly, improvements in insulin-stimulated glucose transport and increased GLUT4 transporter expression in isolated muscle were seen only in conditions that included exercise training. Reduced FA oxidation and increased triacylglycerol synthesis in isolated muscle were observed with all ZDF rats compared with lean rats (P < 0.01) and were unaltered by therapeutic intervention. However, exercise did induce modest increases in peroxisome proliferator-activated receptor-gamma coactivator-1alpha, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity. Thus reduction of skeletal muscle FAT/CD36 and content of ceramide and DAG may be important mechanisms by which exercise training blunts the progression of diet-induced insulin resistance in skeletal muscle.  相似文献   

13.
Endurance exercise training induces a rapidincrease in the GLUT-4 isoform of the glucose transporter in muscle. Infasted rats, insulin-stimulated muscle glucose transport is increased in proportion to the increase in GLUT-4. There is evidence that highmuscle glycogen may decrease insulin-stimulated glucose transport. Thisstudy was undertaken to determine whether glycogen supercompensation interferes with the increase in glucose transport associated with anexercise-induced increase in GLUT-4. Rats were trained by means ofswimming for 6 h/day for 2 days. Rats fasted overnight after the lastexercise bout had an approximately twofold increase in epitrochlearismuscle GLUT-4 and an associated approximately twofold increase inmaximally insulin-stimulated glucose transport activity. Epitrochlearismuscles of rats fed rodent chow after exercise were glycogensupercompensated (86.4 ± 4.8 µmol/g wet wt) and showed nosignificant increase in maximally insulin-stimulated glucose transportabove the sedentary control value despite an approximately twofoldincrease in GLUT-4. Fasting resulted in higher basal muscle glucosetransport rates in both sedentary and trained rats but did notsignificantly increase maximally insulin-stimulated transport in thesedentary group. We conclude that carbohydrate feeding that results inmuscle glycogen supercompensation prevents the increase in maximallyinsulin-stimulated glucose transport associated with an exercisetraining-induced increase in muscle GLUT-4.

  相似文献   

14.
The protein phosphatase calcineurin is a signaling intermediate that induces the transformation of fast-twitch skeletal muscle fibers to a slow-twitch phenotype. This reprogramming of the skeletal muscle gene expression profile may have therapeutic applications for metabolic disease. Insulin-stimulated glucose uptake in skeletal muscle is both impaired in individuals with type II diabetes mellitus and positively correlated with the percentage of slow- versus fast-twitch muscle fibers. Using transgenic mice expressing activated calcineurin in skeletal muscle, we report that skeletal muscle reprogramming by calcineurin activation leads to improved insulin-stimulated 2-deoxyglucose uptake in extensor digitorum longus (EDL) muscles compared with wild-type mice, concomitant with increased protein expression of the insulin receptor, Akt, glucose transporter 4, and peroxisome proliferator-activated receptor-gamma co-activator 1. Transgenic mice exhibited elevated glycogen deposition, enhanced amino acid uptake, and increased fatty acid oxidation in EDL muscle. When fed a high-fat diet, transgenic mice maintained superior rates of insulin-stimulated glucose uptake in EDL muscle and were protected against diet-induced glucose intolerance. These results validate calcineurin as a target for enhancing insulin action in skeletal muscle.  相似文献   

15.
1. The effects of synthetic human amylin on basal and insulin-stimulated (100 and 1000 microunits/ml) rates of lactate formation, glucose oxidation and glycogen synthesis were measured in the isolated rat soleus muscle preparation incubated in the presence of various concentrations of glucose (5, 11 and 22 mM). 2. The rate of glucose utilization was increased by about 2-fold by increasing the glucose concentration from 5 to 22 mM. 3. Synthetic human amylin (10 nM) significantly inhibited (by 46-56%) glycogen synthesis, irrespective of the concentration of insulin or glucose present in the incubation medium. 4. Amylin (10 nM) did not affect insulin-stimulated rates of 2-deoxy[3H]glucose transport and phosphorylation. 5. Intraperitoneal administration of insulin (100 micrograms/kg) to rats in vivo stimulated the rate of [U-14C]glucose incorporation into glycogen in the diaphragm by about 80-fold. This rate was decreased (by 28%) by co-administration of amylin (66 micrograms/kg).  相似文献   

16.
Skeletal muscle insulin resistance may be aggravated by intramyocellular accumulation of fatty acid-derived metabolites that inhibit insulin signaling. We tested the hypothesis that enhanced fatty acid oxidation in myocytes should protect against fatty acid-induced insulin resistance by limiting lipid accumulation. L6 myotubes were transduced with adenoviruses encoding carnitine palmitoyltransferase I (CPT I) isoforms or beta-galactosidase (control). Two to 3-fold overexpression of L-CPT I, the endogenous isoform in L6 cells, proportionally increased oxidation of the long-chain fatty acids palmitate and oleate and increased insulin stimulation of [(14)C]glucose incorporation into glycogen by 60% while enhancing insulin-stimulated phosphorylation of p38MAPK. Incubation of control cells with 0.2 mm palmitate for 18 h caused accumulation of triacylglycerol, diacylglycerol, and ceramide (but not long-chain acyl-CoA) and decreased insulin-stimulated [(14)C]glucose incorporation into glycogen (60%), [(3)H]deoxyglucose uptake (60%), and protein kinase B phosphorylation (20%). In the context of L-CPT I overexpression, palmitate preincubation produced a relative decrease in insulin-stimulated incorporation of [(14)C]glucose into glycogen (60%) and [(3)H]deoxyglucose uptake (40%) but did not inhibit phosphorylation of protein kinase B. Due to the enhancement of insulin-stimulated glucose metabolism induced by L-CPT I overexpression itself, net insulin-stimulated incorporation of [(14)C]glucose into glycogen and [(3)H]deoxyglucose uptake in L-CPT I-transduced, palmitate-treated cells were significantly greater than in palmitate-treated control cells (71 and 75% greater, respectively). However, L-CPT I overexpression failed to decrease intracellular triacylglycerol, diacylglycerol, ceramide, or long-chain acyl-CoA. We propose that accelerated beta-oxidation in muscle cells exerts an insulin-sensitizing effect independently of changes in intracellular lipid content.  相似文献   

17.
The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing, impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change in muscle glucose transport as measured by uptake of 3-O-[14C]-methylglucose. Simultaneously, muscle glycogen stores increased to 2-3.5 times initial values, depending on fibre type. Perfusion for 5 h in the presence of glucose but in the absence of insulin decreased subsequent insulin action on glucose uptake by 80% of the effect of glucose with insulin, but without an increase in muscle glycogen concentration. Perfusion for 5 h with insulin but without glucose, and with subsequent addition of glucose back to the perfusate, revealed glucose uptake and transport similar to initial values obtained in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.  相似文献   

18.
Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determine whether insulin signaling is impaired. Maximally insulin-stimulated phosphatidylinositol (PI) 3-kinase activity was not significantly reduced, whereas protein kinase B (PKB) phosphorylation was approximately 50% lower (P < 0.01) in muscles of chow-fed, than in those of fasted, exercise-trained rats. Our second purpose was to determine whether contraction-stimulated glucose transport is also impaired. The stimulation of glucose transport and the increase in cell surface GLUT-4 induced by contractions were both decreased by approximately 65% in glycogen-supercompensated muscles of trained rats. The contraction-stimulated increase in AMP kinase activity, which has been implicated in the activation of glucose transport by contractions, was approximately 80% lower in the muscles of the fed compared with the fasted rats 18 h after exercise. These results show that both the insulin- and contraction-stimulated pathways for muscle glucose transport activation are impaired in glycogen-supercompensated muscles and provide insight regarding possible mechanisms.  相似文献   

19.
J Rouru  R Huupponen  U Pesonen  M Koulu 《Life sciences》1992,50(23):1813-1820
The effect of subchronic metformin treatment on food intake, weight gain and plasma and tissue hormone levels was investigated in genetically obese male Zucker rats and in their lean controls. Metformin hydrochloride (320 mg/kg/day for 14 days in the drinking water) significantly reduced 24 hour food intake both after one and two weeks treatment in obese rats. In contrast, metformin had only a transient effect on food intake in lean animals. The reduced food intake was associated with body weight decrease, particularly in obese rats. Metformin markedly reduced also the hyperinsulinemia of the obese animals without altering their plasma glucose or pancreatic insulin content which may reflect an improved insulin sensitivity after metformin treatment. Metformin did not change plasma corticosterone levels or insulin and somatostatin concentrations in the pancreas. Metformin reduced pyloric region somatostatin content in lean rats. It is concluded that metformin has an anorectic effect and reduces body weight and hyperinsulinemia in genetically obese Zucker rat.  相似文献   

20.
The effects of insulin on carbohydrate metabolism in atrophied rat soleus muscle are increased after unweighting by tail-cast suspension. This work has been extended by testing the effect of unweighting on the response of carbohydrate metabolism to isoproterenol, a beta-adrenergic agonist. Isoproterenol promoted glycogen degradation more in the unweighted than in the weight-bearing soleus but showed no differences in the extensor digitorum longus, which is unresponsive to hindlimb unweighting. In soleus muscles depleted of glycogen, to avoid varied inhibitory effects of glycogen on glycogen synthesis, isoproterenol inhibited this process more in the unweighted muscle. Isoproterenol did not have a greater inhibitory effect on net uptake of 2-deoxy-D[1,2-3H]glucose by the unweighted muscle. Measurements of intracellular 2-deoxy-[3H]glucose 6-phosphate and 3-O-methyl-D-[1-3H]glucose, which cannot be phosphorylated, showed that isoproterenol inhibited glucose phosphorylation but not transport. This effect could be explained by an increase of glucose 6-phosphate, an inhibitor of hexokinase. At 100 microU insulin/ml but not at a lower amount (10 microU/ml), isoproterenol inhibited hexose phosphorylation more in the control than in the unweighted muscle. This result may be explained by greater insulin antagonism in the unweighted muscle owing to increased insulin sensitivity. However, insulin antagonism of isoproterenol stimulation of glycogenolysis or inhibition of glycogenesis was not altered by unweighting. Therefore, for some aspects of carbohydrate metabolism, the unweighted muscle has an increased response to beta-adrenergic activation, just as this muscle shows increased responses to insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号