首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Esters of cinnamyl alcohol find many applications in food, cosmetic and pharmaceutical industries as flavor and fragrance compounds. The current work focuses on the synthesis of cinnamyl laurate from cinnamyl alcohol and lauric acid, including screening of various immobilized lipases and optimization of reaction conditions such as catalyst loading, speed of agitation, mole ratio and temperature. Among different lipases screened such as Novozym 435, Lipozyme RM IM and Lipozyme TL IM, Novozym 435 was found to be the best catalyst with 60% conversion in 2 h at 30 °C for equimolar quantities of the reactants using 0.33% (w/v) of catalyst and toluene as solvent. An ordered bi–bi mechanism with dead-end complex of lauric acid was found to represent the kinetic data.  相似文献   

2.
Enzymatic reactions in non-aqueous media have been shown to be effective in carrying out chemical transformation where the reactants are insoluble in water or water is a byproduct limiting conversion. Ionic liquids, liquid organic salts with infinitesimal vapor pressure, are potentially useful alternatives to organic solvents. It is known that the thermodynamic water activity is an important variable affecting the activity of enzymes in non-aqueous solvents. This study investigated the influence of water activity on the esterification of geraniol with acetic acid in ionic liquid [bmim]PF6 catalyzed by immobilized Candida antarctica lipase B. The conversion of geraniol in [bmim]PF6 was significant although the reaction rate was slower than in organic solvents. The profile of initial reaction rate-water activity was determined experimentally, and differed from the data reported for other non-aqueous solvents. A maximum in the initial reaction rate was found at aw = 0.6. The pseudo reaction equilibrium constant, Kx, was measured experimentally for the reaction. The average value of Kx in [bmim]PF6 was 12, 20-fold lower than the value reported for the same system in hexane.  相似文献   

3.
4.
月桂酸生物印迹对脂肪酶酯化活力的影响   总被引:1,自引:0,他引:1  
生物印迹是改良酶学特性,扩大脂肪酶工业应用领域的新兴技术。本研究结合溶胶-凝胶脂肪酶固定化工艺,以甲基三甲氧基硅烷(MTMS)和四甲氧基硅烷(TMOS)为前驱体,月桂酸为印迹分子,考察了月桂酸生物印迹对脂肪酶PS酯化活力的影响。脂肪酶酯化活力测定及扫描电镜观察表明生物印迹能显著提高脂肪酶的活性及稳定性。印迹体系经正交试验优化获得的最优条件为:水和硅烷摩尔比(R)为12,聚乙二醇(PEG)加入量为120μl,月桂酸加入量为0.15mmol。在最优反应条件下,印迹酶相对于游离酶比活力提高了44.3倍,相对于未印迹固定化酶提高了2.4倍;印迹酶具有较好的热稳定性,在80℃下处理0.5h后,残余酶活分别为58%,而游离酶未检测到活性。  相似文献   

5.
Summary Candida antarctica lipase was investigated for the synthesis of short chain fatty acid esters of geraniol in a solvent-free system. Maximal activity occurred at 60°C. High yields (about 100%) were obtained with propionate and butyrate, while acetate showed much lower reactivity. The enzyme was used in four consecutive batch reactions with only a 10% loss of activity.  相似文献   

6.
The most common cancer in the female genital tract is malignancy of the endometrium ranking fourth among the aggressive cancers that affects women. Biological clock controls the daily modifications of physiological processes, which sequentially regulate numerous functions in the human body. In this study, female Wistar rats were divided into four groups: group I – control, group II – MNNG (N-methyl-N′-nitro-N-nitrosoguanidine-150 mg/kg) given by intravaginal detention of absorbent cottons dipped with 150 mg of MNNG for weekly twice; group III – co-administration of geraniol (MNNG + GOH) (150 mg/kg b.w); group IV – oral administration of GOH only. The expression of protein levels of PER, CRY, BMAL1 and CLOCK at different time points (00:00,04:00, 08:00, 12:00, 16:00 and 20:00 h) were analyzed over the 24-h period by western blotting. In MNNG-induced group, PER and CRY protein levels were downregulated, whereas BMAL1 and CLOCK expression was upregulated at 00:00 and 20:00. Administration of GOH reversed the expression level of clock gene products observed in MNNG-treated rats. The results indicate that the expression of clock gene products is affected during endometrial carcinogenesis. Earlier reports suggest that carcinogenesis could modify circadian rhythms and our results add additional evidences in similar lines. Our results suggest that anticarcinogenic action of GOH could be via normalizing the expression of clock gene products. The mechanisms for this alteration of clock gene expression are desirable to investigate in future.  相似文献   

7.
Improvement of stereoselective resolution of racemic Naproxen, 2-(6-methoxy-2-naphthyl)propionic acid, was attempted with esterifcation reaction by Candida cylindracea lipase. By carefully selecting the organic medium, a 72-time enhancement of yield of the desired S-ester was achieved. The optimal reaction temperature was approximately 53 degrees C, and an alcohol concentration between 20 mM and 40 mM in an 80% (v/v) isooctane and 20% (v/v) toluene mixture was found. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
The present study reports the improved enzymatic synthesis of ethyl valerate (green apple flavor) by esterification reaction of ethanol and valeric acid in heptane medium. Lipase from Thermomyces lanuginosus (TLL) was immobilized by physical adsorption on polyhydroxybutyrate (PHB) particles and used as a potential biocatalyst. The effect of certain parameters that influence the ester synthesis was evaluated by factorial design. The experimental conditions that maximized the synthesis of ethyl valerate were 30.5°C, 18% m/v of biocatalyst (TLL–PHB), absence of molecular sieves, agitation of 234?rpm, and 1,000?mM of each reactant (ethanol and valeric acid). Under these conditions, conversion percentage ≈92% after 105?min of reaction was observed. Soluble TLL was also used as biocatalyst and the highest conversion was of 82% after 120?min of reaction. Esterification reaction performed in a solvent-free system exhibited conversion of 13% after 45?min of reaction catalyzed by immobilized lipase, while the soluble lipase did not exhibit catalytic activity. The synthesis of the ester was confirmed by Fourier transform infrared spectroscopy and gas chromatography–mass spectrometry analyses. After six consecutive cycles of ethyl valerate synthesis, the prepared biocatalyst retained ≈86% of its original activity.  相似文献   

9.
In this work, the stabilizing effect of bovine serum albumin (BSA), peptone (PEP), and polyethylene glycol (PEG) during immobilization of Candida antarctica lipase on activated carbon was investigated. The influence of enzyme concentration and type of additive, added during the immobilization procedure, was studied using a 22 factorial central composite design. The goal was to maximize the synthetic activity of butyl butyrate, using butyric acid and butanol as substrate in n-heptane. An increase of 31–58% in the esterification activity was obtained when enzyme concentration on the supernatant was enhanced from 86.50 U m L−1 to 226.80 U mL−1. An enhancement in esterification activity of 38–68.95% was observed, depending on the initial enzyme concentration, when PEP was used instead of BSA. No significant increase in the esterification activity was observed when PEP was replaced by PEG. However, thermal stability tests at 50 °C showed that PEG had a higher stabilizing effect.  相似文献   

10.
The kinetics of the esterification of oleic acid with 1-butanol catalyzed by free Rhizomucor miehei lipase in a biphasic system was studied in a batch reactor. The reaction appeared to proceed via a Ping Pong bi–bi mechanism with 1-butanol inhibition. The kinetic constants of the model were determined from experiments at 30 °C with initial concentrations of oleic acid and 1-butanol in the organic phase and 0.05–0.2 g L−1 enzyme in the aqueous phase. The model was used to simulate the batch concentration profiles of the product as well as the initial reaction rates. Agreement of the model with both the batch concentration profiles (average error of 7.2%) and the initial reaction rate per experiment (average error of 16.0%) was good.  相似文献   

11.
The essential oil extracted from palmarosa (Cymbopogon martinii) has proven anti-microbial properties against cells of Saccharomyces cerevisiae. Low concentrations of the oil (0.1%) inhibited the growth of S. cerevisiae cells completely. The composition of the sample of palmarosa oil was determined as 65% geraniol and 20% geranyl acetate as confirmed by GC-FTIR. The effect of palmarosa oil in causing K(+) leakage from yeast cells was attributed mainly to geraniol. Some leakage of magnesium ions was also observed. Blocking potassium membrane channels with caesium ions before addition of palmarosa oil did not change the extent of K(+) ion leakage, which was equal to the total sequestered K(+) in the cells. Palmarosa oil led to changes in the composition of the yeast cell membrane, with more saturated and less unsaturated fatty acids in the membrane after exposure of S. cerevisiae cells to the oil. Some of the palmarosa oil was lost by volatilization during incubation of the oil with the yeast cells. The actual concentration of the oil components affecting the yeast cells could not therefore be accurately determined.  相似文献   

12.
抑制剂对有机相酶促己酸乙酯合成中固定化脂肪酶影响   总被引:3,自引:0,他引:3  
稳定的催化活性和选择性的调节与控制已成为研究有机相酶促反应机制和应用的重要内容。由于选择和优化反应条件的方法具有较大局限性.目前有机介质中酶催化选择性和稳定性的调节与控制的研究除了常用的固定化手段外,更关注通过改变酶分子自身的一些方法上。如蛋白质工程、酶的化学修饰和非共价修饰〔1.2〕。相比之下,其中非共价修饰具有方便、实用的特点。酶的修饰剂大多也是酶的抑制剂。抑制剂已用来研究脂肪酶的结构与代谢特征〔3〕。Russel,Guo等通过其改变酶的构象和界面特征来调节和控制酶稳定的特异性〔4.5〕。我们在对微生物脂肪酶正庚烷中合成短链芳香酯研究基础上〔6.7〕。本文报道用具有两亲特性的表面活性剂、胆汁盐和金属离子这些脂肪酶的抑制剂对庚烷中脂肪酶酶促己酸乙酯酯化反应的影响,以促进酶活性的调节和控制的研究和应用。  相似文献   

13.
An enzymatic method for ready access to d-sedoheptulose-7-phosphate on a preparative scale was developed, based on the irreversible transketolase-catalyzed reaction: β-hydroxypyruvate + d-ribose-5-phosphate → d-sedoheptulose-7-phosphate. d-Sedoheptulose-7-phosphate disodium salt was obtained in 81% overall yield determined using a standard curve obtained by LC/MS/MS.  相似文献   

14.
The kinetics of the esterification of lauric acid by (-)menthol, catalyzed by Penicillium simplicissimum lipase, was studied in water/bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT)/isooctane microemulsions. Due to their low water content, microemulsions assist in reversing the direction of lipase activity, favoring synthetic reactions. The kinetics of this synthesis follows a Ping-Pong Bi--Bi mechanism. The values of all apparent kinetic parameters were determined. The theoretical model for the expression of enzymic activity in reverse micelles, proposed by Verhaert et al. (Verhaert, R., Hilhorst, R., Vermüe, M., Schaafsma, T. J., Veeger, C. 1990. Eur. J. Biochem. 187: 59-72) was extended to express the lipase activity in an esterification reaction involving two hydrophobic substrates in microemulsion systems. The model takes into account the partitioning of the substrates between the various phases and allows the calculation of the intrinsic kinetic constants. The experimental results showing the dependence of the initial velocity on the hydration ratio, W(o) = [H(2)O]/[AOT], of the reverse micelles, were in accordance with the theoretically predicted pattern. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
Rice bran lipase (RBL) was delipidated to enhance its stability in organic solvent and its esterification activity at elevated temperature. The esterification activity of delipidated RBL increased as temperature was increased from 45 to 65°C. The esterification activity of delipidated RBL at 65°C was about 14 times greater than that of the non-delipidated RBL. As temperature was further increased to 75°C, the non-delipidated RBL lost all esterification activity, whereas the delipidated RBL retained approximately 48% of its esterilication activity. The delipidated RBL maintained a relative esterification activity greater than 80% after 16 h of incubation in hexane, whereas the non-delipidated RBL maintained a relative esterification activity of only 50%. A method for production of acylglycerol using delipidated RBL to esterify palm oil fatty acid distillate (PFAD) with glycerol in hexane was successfully developed. The effects of reaction temperatures and type of water removal agents (silica gel and molecular sieve) on the degree of esterification were also examined. A 4 h reaction at 65°C, catalyzed by delipidated RBL and using silica gel as the water removal agent resulted in 53.8% esterification. Thin layer chromatography analysis suggested that the esterified product was primarily comprised of mono-and di-acylglycerols.  相似文献   

16.
Different methods for stabilization of Mucor circinelloides lipase, facilitating its application in organic solvents were tested. Lipase was either isolated from the mycelium and immobilized on solid carriers (derivatives of cellulose, diatomaceous earth, modified porous glass) or immobilized in situ in the mycelium pellets and stabilized. The immobilized enzyme preparations were used for synthesis of sucrose, glucose, butyl and propyl oleates and caprylates, carried out in petroleum and di-n-pentyl ethers. Immobilized preparations of either crude or purified lipase isolated from the mycelium were at least 4–6 times less effective in sucrose esters synthesis than mycelium-bound lipase preparations. Lipase preparation with the highest synthetic activity was obtained by cross-linking of M. circinelloides mycelium pellets with glutardialdehyde (operational stability in sucrose caprylate synthesis was 94% after 4 runs (24 h each), and caprylic acid conversion was 91–85%). The best method for production of mechanically durable biocatalyst, which efficiently catalyzed sucrose esters synthesis, was found to be entrapment of the mycelium-bound lipase in polyvinyl pyrrolidone-containing chitosan beads solidified with hexametapolyphosphate.  相似文献   

17.
The lipase from wheat germ was used for the kinetic resolution of secondary alcohols. It has the opposite enantioselectivity against the Kazlauskas rule and acts as an anti-Kazlauskas catalyst. The effect of initial water activity, organic solvent, acyl donor and temperature were investigated. Wheat germ lipase had a high activity and enantioselectivity only in n-hexane with a high initial water activity (αw = 0.97), especially with 1-phenylethanol (C 32%, E > 200). Its performance changed little with the chain length of acyl donor and temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m2/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3–4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60 °C for 8 h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity.  相似文献   

19.
This paper presents an experimental comparison of the kinetics of esterification catalyzed with the lipase from Burkholderia cepacia, either free, or encapsulated in a silica aerogel dried by the supercritical CO2 method. The operational characteristics, in terms of pre-equilibration at given water thermodynamic activity aw, mass of enzyme in the gel, size of aerogel particles, are presented. The kinetic model known as BiBi Ping Pong with inhibition by both substrates has been found to fit relatively well with the experimental results, except when both substrate concentrations were high with the encapsulated enzyme. All kinetics constants were found to be increased by aerogel encapsulation. In particular Vmax was increased by a factor of the order of 10 per mg of enzyme.  相似文献   

20.
A mono- and diacylglycerol lipase (MDL) was cloned from Penicillium cyclopium and expressed in Pichia pastoris strain GS115. The recombinant enzyme was named Lipase GH1. High cell density fermentation was performed by culture in a 7.5-L fermenter using BSMG medium, in which the phosphate in basal salt medium was replaced by sodium glycerophosphate (Na2GP). The maximal lipase activity detected was 18,000 U per mL, and total protein content in the fermentation supernatant was 3.94 g per L. The activity of the liquid enzyme remained stable under alkaline conditions at 4 °C for 6 months and was 50% after one year. Lipase GH1 was used for the synthesis of mono- and diacylglycerols (MAGs and DAGs), which are commonly used emulsifiers for industrial applications. A conversion rate of 84% after 24 h of reaction was obtained using glycerol/oleic acid molar ratio 11:1, water content 1.5 wt%, enzyme dosage 80 U per g, and reaction temperature 35 °C. Lipase GH1 was more efficient for the synthesis of MAGs and DAGs than was Lipase G50 (a similar, commercially available lipase derived from Penicillium camemberti) when oleic acid was used as an acyl donor. Lipase GH1 has potential for food emulsifier preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号