首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
TNFR1 associated death domain protein (TRADD) contains an N-terminal TRAF binding domain and a C-terminal death domain along with nuclear import and export sequences that cause shuttling between the cytoplasm and nucleus. The death domain of TRADD contains the nuclear import sequence and expression of the core death domain (nuclear TRADD) results in exclusive nuclear localization and activation of a distinct apoptotic pathway. Cytoplasmic TRADD activates apoptosis through Fas-associated death domain protein (FADD) and caspase-8 activation that was blocked by caspase inhibitors or dominant-negative FADD. These inhibitors did not inhibit death induced by nuclear TRADD, which could only be inhibited by combining caspase inhibitors and a serine protease inhibitor. The pathway activated by nuclear TRADD requires caspase-9 catalytic activity. However, apoptosis activating factor deficiency confers only partial protection from death. This pathway represents an alternate means by which TRADD can regulate cell death independently of FADD and caspase-8 that occurs from the nucleus rather than the cytoplasm.  相似文献   

2.
MAP kinase phosphatase (MKP)-3 is a cytoplasmic dual specificity protein phosphatase that specifically binds to and inactivates the ERK1/2 MAP kinases in mammalian cells. However, the molecular basis of the cytoplasmic localization of MKP-3 or its physiological significance is unknown. We have used MKP-3-green fluorescent protein fusions in conjunction with leptomycin B to show that the cytoplasmic localization of MKP-3 is mediated by a chromosome region maintenance-1 (CRM1)-dependent nuclear export pathway. Furthermore, the nuclear translocation of MKP-3 seen in the presence of leptomycin B is mediated by an active process, indicating that MKP-3 shuttles between the nucleus and cytoplasm. The amino-terminal noncatalytic domain of MKP-3 is both necessary and sufficient for nuclear export of the phosphatase and contains a single functional leucine-rich nuclear export signal (NES). Even though this domain of the protein also mediates the binding of MKP-3 to MAP kinase, we show that mutations of the kinase interaction motif which abrogate ERK2 binding do not affect MKP-3 localization. Conversely, mutation of the NES does not affect either the binding or phosphatase activity of MKP-3 toward ERK2, indicating that the kinase interaction motif and NES function independently. Finally, we demonstrate that the ability of MKP-3 to cause the cytoplasmic retention of ERK2 requires both a functional kinase interaction motif and NES. We conclude that in addition to its established function in the regulated dephosphorylation and inactivation of MAP kinase, MKP-3 may also play a role in determining the subcellular localization of its substrate. Our results reinforce the idea that regulatory proteins such as MKP-3 may play a key role in the spatio-temporal regulation of MAP kinase activity.  相似文献   

3.
4.
Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine-rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53-binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53 NES is both necessary and sufficient for export. This report also demonstrates that the cytoplasmic localization of p53 in neuroblastoma cells is due to its hyperactive nuclear export: p53 in these cells can be trapped in the nucleus by the export-inhibiting drug leptomycin B or by binding a p53-tetramerization domain peptide that masks the NES. We propose a model in which regulated p53 tetramerization occludes its NES, thereby ensuring nuclear retention of the DNA-binding form. We suggest that attenuation of p53 function involves the conversion of tetramers into monomers or dimers, in which the NES is exposed to the proteins which mediate their export to the cytoplasm.  相似文献   

5.
6.
The bovine herpesvirus 1 (BHV-1) tegument protein VP22 is predominantly localized in the nucleus after viral infection. To analyze subcellular localization in the absence of other viral proteins, a plasmid expressing BHV-1 VP22 fused to enhanced yellow fluorescent protein (EYFP) was constructed. The transient expression of VP22 fused to EYFP in COS-7 cells confirmed the predominant nuclear localization of VP22. Analysis of the amino acid sequence of VP22 revealed that it does not have a classical nuclear localization signal (NLS). However, by constructing a series of deletion derivatives, we mapped the nuclear targeting domain of BHV-1 VP22 to amino acids (aa) 121 to 139. Furthermore, a 4-aa motif, 130PRPR133, was able to direct EYFP and an EYFP dimer (dEYFP) or trimer (tEYFP) predominantly into the nucleus, whereas a deletion or mutation of this arginine-rich motif abrogated the nuclear localization property of VP22. Thus, 130PRPR133 is a functional nonclassical NLS. Since we observed that the C-terminal 68 aa of VP22 mediated the cytoplasmic localization of EYFP, an analysis was performed on these C-terminal amino acid sequences, and a leucine-rich motif, 204LDRMLKSAAIRIL216, was detected. Replacement of the leucines in this putative nuclear export signal (NES) with neutral amino acids resulted in an exclusive nuclear localization of VP22. Furthermore, this motif was able to localize EYFP and dEYFP in the cytoplasm, and the nuclear export function of this NES could be blocked by leptomycin B. This demonstrates that this leucine-rich motif is a functional NES. These data represent the first identification of a functional NLS and NES in a herpesvirus VP22 homologue.  相似文献   

7.
The leucine-rich nuclear export signal (NES) is used to shuttle large cellular proteins from the nucleus to the cytoplasm. The nuclear export receptor Crm1 is essential in this process by recognizing the NES motif. Here, we show that the oncogenic hepatitis B virus (HBV) X protein (HBx) contains a functional NES motif. We found that the predominant cytoplasmic localization of HBx is sensitive to the drug leptomycin B (LMB), which specifically inactivates Crm1. Mutations at the two conserved leucine residues to alanine at the NES motif (L98A,L100A) resulted in a nuclear redistribution of HBx. A recombinant HBx protein binds to Crm1 in vitro. In addition, ectopic expression of HBx sequesters Crm1 in the cytoplasm. Furthermore, HBx activates NFkappaB by inducing its nuclear translocation in a NES-dependent manner. Abnormal cytoplasmic sequestration of Crm1, accompanied by a nuclear localization of NFkappaB, was also observed in hepatocytes from HBV-positive liver samples with chronic active hepatitis. We suggest that Crm1 may play a role in HBx-mediated liver carcinogenesis.  相似文献   

8.
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity.  相似文献   

9.
K Engel  A Kotlyarov    M Gaestel 《The EMBO journal》1998,17(12):3363-3371
To study the intracellular localization of MAPKAP kinase 2 (MK2), which carries a putative bipartite nuclear localization signal (NLS), we constructed a green fluorescent protein-MAPKAP kinase 2 fusion protein (GFP-MK2). In transfected cells, this protein is located predominantly in the nucleus; unexpectedly, upon stress, it rapidly translocates to the cytoplasm. This translocation can be blocked by the p38 MAP kinase inhibitor SB203580, indicating its regulation by phosphorylation. Molecular mimicry of MK2 phosphorylation at T317 in GFP-MK2 led to a mutant which is located almost exclusively in the cytoplasm of the cell, whereas the mutant T317A shows no stress-induced redistribution. Since leptomycin B, which inhibits the interaction of exportin 1 with the Rev-type leucine-rich nuclear export signal (NES), blocks stress-dependent translocation of GFP-MK2, it is supposed that phosphorylation-induced export of the protein causes the translocation. We have identified the region responsible for nuclear export in MK2 which is partially overlapping with and C-terminal to the autoinhibitory motif. This region contains a cluster of hydrophobic amino acids in the characteristic spacing of a leucine-rich Rev-type NES which is necessary to direct GFP-MK2 to the cytoplasm. However, unlike the Rev-type NES, this region alone is not sufficient for nuclear export. The data obtained indicate that MK2 contains a constitutively active NLS and a stress-regulated signal for nuclear export. Keywords: nuclear export/nuclear import/protein phosphorylation/signal transduction/stress response  相似文献   

10.
The p53 tumour-suppressor protein is negatively regulated by HDM2. Recent reports indicate that the leucine-rich nuclear-export sequence (NES) of HDM2 enables it to shuttle to the cytoplasm, and that this activity is required for degradation of p53. However, it is unclear whether HDM2 is involved in nuclear export of p53, partly because p53 has itself been shown to contain a functional NES within its tetramerization domain. Here we show that co-expression of HDM2 with green fluorescent protein (GFP)-tagged p53 causes redistribution of p53 from the nucleus to the cytoplasm of the cell. This activity is dependent on binding of p53 to HDM2, and requires an intact p53 NES, but is independent of the HDM2 NES. A mutant of the HDM2 RING-finger domain that is unable to ubiquitinate p53 does not cause relocalization of p53, indicating that ubiquitin ligation or other activities of this region of HDM2 may be necessary for its regulation of p53 localization.  相似文献   

11.
FAK nuclear export signal sequences   总被引:2,自引:0,他引:2  
Ossovskaya V  Lim ST  Ota N  Schlaepfer DD  Ilic D 《FEBS letters》2008,582(16):2402-2406
Ubiquitously expressed focal adhesion kinase (FAK), a critical component in transducing signals from sites of cell contacts with extracellular matrix, was named after its typical localization in focal adhesions. A nuclear localization of FAK has been also reported and its scaffolding role in nucleus and requirement for p53 ubiquitination were only recently described. Whereas FAK nuclear localization signal (NLS) was found in F2 lobe of FERM domain, nuclear export signal (NES) sequences have not been yet determined. Here we demonstrate that FAK has two NES sequences, NES1 in F1 lobe of FERM domain and NES2 in kinase domain. Although, both NES1 and NES2 are evolutionary conserved, and present as well in FAK-related protein kinase Pyk2, only NES2 demonstrates full biological nuclear export activity.  相似文献   

12.
Nuclear transport of viral nucleic acids is crucial to the life cycle of many viruses. Borna disease virus (BDV) belongs to the order Mononegavirales and replicates its RNA genome in the nucleus. Previous studies have suggested that BDV nucleoprotein (N) and phosphoprotein (P) have important functions in the nuclear import of the viral ribonucleoprotein (RNP) complexes via their nuclear targeting activity. Here, we showed that BDV N has cytoplasmic localization activity, which is mediated by a nuclear export signal (NES) within the sequence. Our analysis using deletion and substitution mutants of N revealed that NES of BDV N consists of a canonical leucine-rich motif and that the nuclear export activity of the protein is mediated through the chromosome region maintenance protein-dependent pathway. Interspecies heterokaryon assay indicated that BDV N shuttles between the nucleus and cytoplasm as a nucleocytoplasmic shuttling protein. Furthermore, interestingly, the NES region overlaps a binding site to the BDV P protein, and nuclear export of a 38-kDa form of BDV N is prevented by coexpression of P. These results suggested that BDV N has two contrary activities, nuclear localization and export activity, and plays a critical role in the nucleocytoplasmic transport of BDV RNP by interaction with other viral proteins.  相似文献   

13.
14.
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus; in response to activating stimuli, MAPKs translocate into the nucleus. Mammalian MEK MAPK kinases (MAPKKs) have in their N termini an MAPK-docking site and a nuclear export signal (NES) sequence, which are known to play critical roles in maintaining ERK MAPKs in the cytoplasm of unstimulated cells. Herein, we show that the Wis1 MAPKK of the stress-activated Spc1 MAPK cascade in fission yeast also has a MAPK-docking site and an NES sequence in its N-terminal domain. Unexpectedly, an inactivating mutation to the NES of chromosomal wis1(+) does not affect the subcellular localization of Spc1 MAPK, whereas this NES mutation disturbs the cytoplasmic localization of Wis1. However, when Wis1 is targeted to the nucleus by fusing to a nuclear localization signal sequence, stress-induced nuclear translocation of Spc1 is abrogated, indicating that cytoplasmic Wis1 is required for nuclear transport of Spc1 upon stress. Moreover, we have observed that a fraction of Wis1 translocates into the nucleus in response to stress. These results suggest that cytoplasmic localization of Wis1 MAPKK by its NES is important for stress signaling to the nucleus.  相似文献   

15.
Control over the nuclear localization of nuclear factor kappaB/Rel proteins is accomplished in large part through association with members of the inhibitor of kappaB (IkappaB) protein family. For example, the well studied IkappaBalpha protein actively shuttles between the nucleus and the cytoplasm and both inhibits nuclear import and mediates nuclear export of NF-kappaB/Rel proteins. In contrast, the IkappaBbeta protein can inhibit nuclear import of NF-kappaB/Rel proteins but does not remove NF-kappaB/Rel proteins from the nucleus. To further understand how the IkappaB proteins control the nuclear-cytoplasmic distribution of NF-kappaB/Rel proteins, we have characterized the nuclear import and nuclear export functions of IkappaBepsilon. Our results indicate that the IkappaBepsilon protein, like the IkappaBalpha protein, actively shuttles between the nucleus and the cytoplasm. Similar to IkappaBalpha, nuclear import of IkappaBepsilon is mediated by its ankyrin repeat domain and is not blocked by the dominant-negative RanQ69L protein. However, the nuclear import function of the IkappaBepsilon ankyrin repeat domain is markedly less efficient than that of IkappaBalpha, with the result that nuclear shuttling of IkappaBepsilon between the nucleus and the cytoplasm is significantly slower than IkappaBalpha. Nuclear export of IkappaBepsilon is mediated by a short leucine-rich nuclear export sequence (NES)-like sequence ((343)VLLPFDDLKI(352)), located between amino acids 343 and 352. This NES-like sequence is required for RanGTP-dependent binding of IkappaBepsilon to CRM1. Nuclear accumulation of IkappaB(epsilon) is increased by either leptomycin B treatment or alanine substitutions within the IkappaBepsilon-derived NES. A functional NES is required for both efficient cytoplasmic retention and post-induction control of c-Rel by IkappaBepsilon, consistent with the notion that IkappaBepsilon-mediated nuclear export contributes to control over the nucleocytoplasmic distribution of NF-kappaB/Rel proteins.  相似文献   

16.
Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates nucleo-cytoplasmic transport and cell growth arrest activity of RASSF2. Taken together, the present study suggests that active transport between nucleus and cytoplasm may constitute an important regulatory mechanism for RASSF2 function.  相似文献   

17.
The polypyrimidine tract-binding protein (PTB) is a nuclear protein that regulates alternative splicing. In addition, it plays a role in the cytoplasm during infection by some viruses and functions as a positive effector of hepatitis B virus RNA export. Thus, it presumably contains a nuclear export signal (NES). Using a heterokaryon export assay in transfected cultured cells, we have shown that the N-terminal 25 amino acid residues of PTB function as an autonomous NES, with residues 11-16 being important for its activity. Unlike the heteronuclear ribonucleoprotein A1 NES, this NES is separable from the nuclear localization signal, which spans the entire N-terminal 60 residues of PTB. The PTB NES cannot be shown to bind to CAS or Crm1, cellular receptors known to export proteins from the nucleus, and it functions in the presence of leptomycin B, a specific inhibitor of Crm1-dependent export. PTB deleted of its NES, unlike wild type PTB, does not stimulate the export of hepatitis B virus RNA. Therefore, the PTB NES is a functionally important domain of this multifunctional protein that utilizes an unknown export receptor.  相似文献   

18.
The adapter protein tumor necrosis factor receptor (TNFR)1-associated death domain (TRADD) plays an essential role in recruiting signaling molecules to the TNFRI receptor complex at the cell membrane. Here we show that TRADD contains a nuclear export and import sequence that allow shuttling between the nucleus and the cytoplasm. In the absence of export, TRADD is found within nuclear structures that are associated with promyelocytic leukemia protein (PML) nuclear bodies. In these structures, the TRADD death domain (TRADD-DD) can activate an apoptosis pathway that is mechanistically distinct from its action at the membrane-bound TNFR1 complex. Apoptosis by nuclear TRADD-DD is promyelocytic leukemia protein dependent, involves p53, and is inhibited by Bcl-xL but not by caspase inhibitors or dominant negative FADD (FADD-DN). Conversely, apoptosis induced by TRADD in the cytoplasm is resistant to Bcl-xL, but sensitive to caspase inhibitors and FADD-DN. These data indicate that nucleocytoplasmic shuttling of TRADD leads to the activation of distinct apoptosis mechanisms that connect the death receptor apparatus to nuclear events.  相似文献   

19.
BRD7的亚细胞定位及其假定核输出信号序列的分离与鉴   总被引:2,自引:0,他引:2  
BRD7被鉴定为一个鼻咽癌密切相关新基因和潜在的核转录调节因子.通过绿色荧光蛋白(GFP)介导的亚细胞定位方法,系统研究BRD7在非洲绿猴肾COS7细胞、人宫颈癌HeLa细胞以及人鼻咽癌HNE1细胞中的亚细胞定位,发现BRD7主要定位在细胞核,呈细点状或条梭状分布,3株细胞中没有明显的细胞类型差异.通过对BRD7编码蛋白氨基酸序列进行比对分析,发现了1个具有亮氨酸富集特征的假定核输出信号序列pNES,该区域具有类似核输出信号特征序列“ L-x(2,3)-[LIVFM]-x(2,3)-L-x-[LI] "(X代表任意氨基酸)的结构;通过功能分析,发现它不具有介导异源蛋白GFP胞浆定位的功能,且其亚细胞定位或胞浆/胞核分布比例不受细霉素B(leptomycin B)干预的影响,说明这个pNES不具核输出信号结构域的功能,不是BRD7的核输出信号.  相似文献   

20.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号