共查询到20条相似文献,搜索用时 15 毫秒
1.
D M Stocco 《The Journal of steroid biochemistry and molecular biology》1992,43(4):319-333
In previous studies we and others have described several mitochondrial proteins which are synthesized in response to acute hormone stimulation in several steroidogenic tissues. In both MA-10 mouse Leydig tumor cells and primary cultures of rat adrenal cortex cells, these proteins consist of a family of 37 kilodalton (kDa) and 32 kDa precursor forms and fully processed forms which are 30 kDa in molecular weight. The nature of the appearance of these proteins and their subcellular localization to the mitochondria, the site of the rate limiting step in steroidogenesis, has led to the speculation that they may be involved in the acute regulation of steroidogenesis. In the present study we have taken advantage of another steroidogenic cell, the R2C rat Leydig tumor cell, to perform studies which further indicate that these mitochondrial proteins are involved in the regulation of steroidogenesis. Unlike the MA-10 cell which requires hormone stimulation for steroid production, the R2C cell is a constitutive progesterone producer whose steroid production cannot be further increased with hormone stimulation. We have shown that the R2C cell line is less sensitive to the inhibition of steroid production by the metal chelator orthophenanthroline (OP) than is the MA-10 cell. We have demonstrated that progesterone production and the 30 kDa mitochondrial proteins remain present in the R2C cells at a concentration of OP which completely inhibits progesterone production and totally eliminates the 30 kDa proteins in MA-10 cells. As further evidence for the role of these proteins in steroidogenic regulation, we have isolated several revertants of the R2C parent (P) cell line which have lost the ability to synthesize progesterone constitutively, but which can be stimulated to synthesize this steroid by trophic hormone and cAMP analog. In these revertants, designated (R), the normally constitutively present 30 kDa proteins are greatly decreased compared to controls, but reappear in large amounts following hormone stimulation. Taken together, these data provide further evidence that the 30 kDa mitochondrial proteins are involved in the acute regulation of steroidogenesis in Leydig cells. 相似文献
2.
Amphetamine influences plasma and testicular testosterone levels. However, there is no evidence that amphetamine can directly influence Leydig cell functions. In the present study, a MA-10 mouse Leydig tumor cell line was used to determine whether and how amphetamine affected Leydig cell steroidogenesis. MA-10 cells were treated with different concentrations of amphetamine without or with human chorionic gonadotropin (hCG) and/or enzyme precursors over different time durations. Steroid production, enzyme activities and StAR protein expression were determined. Amphetamine alone had no any effect on MA-10 cell steroidogenesis. However, amphetamine (10(-11)M and 10(-10)M) significantly enhanced hCG-treated progesterone production at 3 hr in MA-10 cells (p < 0.05). Furthermore, amphetamine significantly induced more progesterone production upon treatment with 22R-hydroxycholesterol (p < 0.05), a precursor of P450 side-chain cleavage enzyme (P450scc). However, amphetamine did not induce more progesterone production when treated with pregnenolone (p > 0.05), a precursor of 3beta-hydroxysteroid dehydrogenase. In addition, the expressions of StAR protein and P450scc enzyme were not significantly different between hCG alone and hCG plus amphetamine treatment in MA-10 cells (p > 0.05). These results suggested that amphetamine enhanced hCG-induced progesterone production in MA-10 cells by increasing P450scc activity without influencing StAR protein and P450scc enzyme expression or 3beta-HSD enzyme activity. 相似文献
3.
Lead is an environmental and occupational pollutant. It has been reported that lead affects the male reproductive system in humans and animals. However, the cellular mechanism of the adverse effect of lead on Leydig cell steroidogenesis remains unknown. To clarify whether lead has a direct effect on Leydig cells and how lead affects Leydig cells, MA-10 cells, a mouse Leydig tumor cell line, were exploited in this study. Lead acetate significantly inhibited hCG- and dbcAMP-stimulated progesterone production in MA-10 cells at 2 h. Steroid production stimulated by hCG or dbcAMP were reduced by lead. The mechanism of lead in reducing MA-10 cell steroidogenesis was further investigated. The expression of Steroidogenic Acute Regulatory (StAR) protein and the activities of P450 side-chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzymes were detected. Cells were treated with dbcAMP, 22R-hydroxycholesterol or pregnenolone alone or in combination with lead acetate ranging from 10(-8) to 10(-5) M for 2 h. The expression of StAR protein stimulated by dbcAMP was suppressed by lead at about 50%. Progesterone productions treated with 22R-hydroxycholesterol or pregnenolone were reduced 30-40% in lead-treated MA-10 cells. These data suggest that lead directly inhibited steroidogenesis by decreasing StAR protein expression and the activities of P450scc and 3beta-HSD enzymes with a dose-response trend in MA-10 cells. Moreover, cadmium, a calcium channel blocker, abolished inhibitory effect of lead on MA-10 cell steroid production. This indicates that lead might act on calcium channel to regulate MA-10 cell steroidogenesis. 相似文献
4.
Tremella mesenterica (TM), a yellow jelly mushroom, has been traditionally used as tonic food to improve body condition in Chinese society for a long time. We have previously demonstrated that TM reduced in vitro hCG-treated steroidogenesis in MA-10 mouse Leydig tumor cells without any toxicity effect. In the present study, the mechanism how TM suppressed hCG-treated steroidogenesis in MA-10 cells was investigated. MA-10 cells were treated with vehicle, human chorionic gonadotropin (hCG, 50 ng/ml), or different reagents with or without TM to clarify the effects. TM significantly suppressed progesterone production with the presences of forskolin (10 and 100 microM) or dbcAMP (0.5 and 1mM), respectively, in MA-10 cells (p<0.05), which indicated that TM suppressed steroidogenesis after PKA activation along the signal pathway. Beyond our expectation, TM induced the expression of steroidogenic acute regulatory (StAR) protein with or without hCG treatments. However, TM profoundly decreased P450 side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzyme activities without any influences on the expression of both enzymes. These inhibitions on steroidogenic enzyme activities might counteract the stimulation of StAR protein expression. In conclusion, results suggest that TM suppressed hCG-treated steroidogenesis in MA-10 cells by inhibiting PKA signal pathway and steroidogenic enzyme activities. 相似文献
5.
In this study we attempted to examine the effects of ketoconazole on steroid biosynthesis and to determine which steps in the steroidogenic pathway were blocked using MA-10 Mouse Leydig tumor cells. This cloned cell line produces progesterone as the major steroid following stimulation by hCG or dbcAMP. At a concentration of 1 microM ketoconazole completely inhibited the hCG- and dbcAMP-stimulated progesterone synthesis in MA-10 Leydig cells. The conversion of 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone was also suppressed by this drug. The presence of ketoconazole inhibited mitochondrial steroid synthesis but required high concentrations of the drug as compared to inhibition in intact cells. No accumulation of pregnenolone was observed in the presence of ketoconazole indicating that the activity of 3 beta-hydroxysteroid dehydrogenase was not affected. We conclude that ketoconazole directly inhibits the activity of cholesterol side-chain cleavage enzyme (CSCC), a rate-determining enzymatic step in steroidogenesis, by interacting with cytochrome P-450scc. 相似文献
6.
C Kwun A Patel S Pletcher B Lyons M Abdelrahim D Nicholson E Morris K Salata G L Francis 《Steroids》1999,64(8):499-509
Ceramide is known to have major roles in the control of cell proliferation, differentiation, and apoptosis. Recent studies also have shown that ceramide affects steroid production by JEG-3 choriocarcinoma cells, acutely dispersed rat Leydig cells, and ovarian granulosa cells, but the mechanism by which this occurs is unknown. Because ceramide induces apoptosis in many different cell types, we hypothesized that ceramide might affect steroidogenesis and/or induce apoptosis in MA-10 murine Leydig cells. To test this, MA-10 cells were incubated with either the water soluble C2-ceramide, (N-acetyl-sphingosine, 0.01-10 cm); bacterial sphingomyelinase (1-100 mU/ml); or C2-dihydroceramide (N-acetyl-sphinganine, 0.1-10 microM). The data show that N-acetyl-sphingosine significantly increased basal (0.87 +/- 0.2 vs. 0.42 +/- 0.09 ng/mg cell protein, P < 0.01) and human chorionic gonadotropin (hCG) stimulated progesterone (P) synthesis (204 +/- 12 vs. 120 +/- 5 ng/mg cell protein, P < 0.001); as did sphingomyelinase (basal P = 0.83 +/- 0.1 ng/mg cell protein, P < 0.01; hCG stimulated P = 173 +/- 7 ng/mg cell protein, P < 0.001). C2-dihydroceramide also increased basal P synthesis but was less effective than ceramide on a molar basis. Neither sphingomyelinase (100 mU/ml) nor ceramide (10 microM) had any effect on cAMP production or human chorionic gonadotropin binding; and neither induced any signs of apoptosis (FragEL DNA fragmentation assay and electron microscopy). Cells incubated with anti-Fas (300 ng/ml) demonstrated DNA fragmentation, nuclear condensation, and frequent apoptotic bodies, but had no change in P synthesis. These data show that ceramide significantly increases MA-10 Leydig cell P synthesis but does not induce apoptosis. The mechanism by which ceramide increases steroid hormone synthesis remains unknown but does not appear to be linked to the induction of apoptosis in MA-10 cells. 相似文献
7.
We have previously shown that mouse epidermal growth factor (mEGF) attenuates the increase in intracellular cAMP provoked by human choriogonadotropin (hCG) in MA-10 Leydig tumor cells (Ascoli, M., Euffa, J., and Segaloff, D. L. (1987) J. Biol. Chem. 262, 9196-9203). The studies presented herein were designed to investigate the mechanism(s) responsible for this phenomenon. We show that mEGF attenuates the increase in cAMP accumulation provoked by hCG primarily, if not entirely, by inhibiting adenylate cyclase activity. This phenomenon has some specificity for the agonist used, but it is not cell-specific. Thus, mEGF inhibited hCG-activated adenylate cyclase in MA-10 cells and in rat luteal cells but had no effect on the forskolin-activated enzyme in MA-10 cells or the isoproterenol-activated enzyme in rat luteal cells. 相似文献
8.
9.
Numerous studies have indicated that treatment of Leydig cells with gonadotropin results in increased levels of intracellular cAMP, binding of cAMP to and activation of protein kinase A, phosphorylation of proteins, synthesis of new proteins and eventually, stimulation of steroidogenesis. In addition, recent studies have indicated that protein phosphorylation is an indispensable event in the production of steroids in response to hormone stimulation in adrenal cells. Because of the important role of phosphorylation in steroidogenic regulation, we investigated the effects of human chorionic gonadotropin (hCG), dibutyryl cyclic AMP (dbcAMP), forskolin and the phorbol ester, phorbol-12-myristate 13-acetate (PMA) on protein phosphorylation in MA-10 mouse Leydig tumor cells. Cells were stimulated with different steroidogenic compounds in the presence of [32P]orthophosphoric acid for 2 h and phosphoproteins analyzed by two-dimensional polyacrylamide gel-electrophoresis (PAGE). Results demonstrated an increase in the phosphorylation of four proteins (22 kDa, pI 5.9; 24 kDa, pI 6.7 and 30 kDa, pI 6.3 and 6.5) in response to 34 ng/ml hCG, 1 mM dbcAMP and 100 microM forskolin. Conversely, treatment of cells with PMA increased the phosphorylation of only one of these proteins (30 kDa, pI 6.3). At least two of these proteins (30 kDa, pI 6.5 and 6.3) appear to be identical to proteins which we and others have shown to be synthesized in response to trophic hormone stimulation in adrenal, luteal and Leydig cells. In addition, they also appear to be identical to adrenal cell mitochondrial proteins demonstrated to be phosphorylated in response to ACTH. These data indicate that proteins similar to those phosphorylated in adrenal cells in response to ACTH are phosphorylated in hormone stimulated testicular Leydig cells and that these proteins may be involved in steroidogenic regulation. 相似文献
10.
Stimulation of progesterone production by phorbol-12-myristate-13-acetate in MA-10 Leydig tumor cells 总被引:1,自引:0,他引:1
The tumor-promoting phorbol ester, phorbol-12-myristate-13-acetate (PMA) markedly stimulated progesterone production in MA-10 Leydig tumor cells. A slight but significant increase (35%) in the activity of the cholesterol side-chain cleavage (CSCC) enzyme was observed in mitochondria isolated from the PMA-treated MA-10 Leydig cells when compared to mitochondria isolated from non-treated cells. However, this stimulation of CSCC activity appears to be of limited importance when compared to the 240-fold increase observed in progesterone production following PMA stimulation. In contrast, the inactive phorbol ester 4 alpha-phorbol-12,13-didecanoate (alpha-PD) had no effect on either progesterone production or CSCC activity. PMA had no effect on the conversion of 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone suggesting that one of the mechanism(s) of PMA action may involve the delivery of cholesterol to the mitochondria and/or the affinity of cholesterol with cytochrome P-450scc. Stimulation of steroidogenesis by PMA was also shown to be inhibited by cycloheximide. When PMA was added together with a submaximal dose of hCG, hCG-stimulated steroidogenesis was inhibited. However, at a maximal dose of human chorionic gonadotropin (hCG), PMA inhibited steroid synthesis at 1 and 2 h but had no significant effect at 3 h. Conversely, PMA had an additive effect on cAMP induced steroidogenesis. It was further demonstrated that PMA resulted in a decrease in the hCG-induced accumulation of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
Chen YC Huang YL Huang BM 《The international journal of biochemistry & cell biology》2005,37(1):214-223
Cordyceps sinensis (CS) mycelium stimulates steroidogenesis in MA-10 mouse Leydig tumor cells, but the mechanisms remain unclear. In this study, MA-10 cells were treated with different reagents in the presence or absence of CS (10 mg/ml) for 3 h to determine the mechanisms. Results illustrated that CS activated the Gsalpha protein subunit, but not Gialpha, to induce cell steroidogenesis. Moreover, PKA inhibitors inhibited 37% of CS-stimulated steroidogenesis, which demonstrated that CS might enhance the cAMP-PKA pathway to affect MA-10 cell steroidogenesis. Because of incomplete inhibition by PKA inhibitors, we also examined the PKC pathway. PKC inhibitor, phospholipase C inhibitor, and calmodulin antagonist blocked 35-52% of CS-stimulated steroidogenesis in MA-10 cells, strongly suggesting that CS had activated the PKC pathway. Co-treatment with PKA and PKC inhibitors abolished 61% of CS-stimulated steroid production, indicating that CS simultaneously activated PKA and PKC pathways. Moreover, CS induced the expression of steroidogenic acute regulatory (StAR) protein in dose- and time-dependent relationships, and PKA inhibitor, PKC inhibitor, or co-treatment with both inhibitors suppressed it. These data support that CS activates both PKA and PKC signal transduction pathways to stimulate MA-10 cell steroidogenesis. 相似文献
12.
Using a cloned Leydig tumor cell line (designated MA-10), we have studied the activity of cholesterol side-chain (CSCC) enzyme, the rate-determining step in steroidogenesis, in mitochondria isolated from cells pretreated either with human chorionic gonadotropin (hCG) or dibutyryl cyclic adenosine monophosphate (dbcAMP). Results showed a slight but significant increase in CSCC activity with treatment by cAMP (25% increase) and hCG (60% increase), as compared to mitochondria isolated from nontreated control cells. However, this stimulation of CSCC activity appears to be of limited significance when compared to the approximately 1000-fold or greater increase observed in progesterone production in the presence of hCG or dbcAMP. On the other hand, unstimulated MA-10 cells or isolated mitochondria efficiently converted 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone, and this conversion was not affected by cycloheximide. The addition of cholesterol to intact cells or to isolated mitochondria did not affect progesterone production. Our observations clearly indicate that given the proper hydroxy substrates (22R-hydroxycholesterol or 25-hydroxycholesterol), MA-10 Leydig cells are able to convert them into progesterone without any stimulation by steroidogenic stimuli, i.e. cAMP or hCG. Since MA-10 Leydig cells can efficiently convert 22R-hydroxycholesterol--an intermediate in CSCC reaction--into progesterone, these results suggest that the key regulatory step in the mechanism of trophic hormone-stimulated steroid production is the first hydroxylation step of the 3 sequential monooxygenation reactions involved in the conversion of cholesterol to pregnenolone. 相似文献
13.
J V Swinnen B D'Souza M Conti M Ascoli 《The Journal of biological chemistry》1991,266(22):14383-14389
In order to assess the effect of increased cAMP degradation on the responsiveness on an endocrine cell, we have obtained stable transfectants of MA-10 Leydig tumor cells that overexpress a mammalian cAMP-phosphodiesterase. Two novel cell lines, designated MA-10(P+8) and MA-10(P+29), that express high levels of the transfected enzyme were characterized. Although the basal levels of cAMP in the mutant cell lines are comparable to those of the wild-type cells, the increase in cAMP accumulation elicited by human choriogonadotropin (hCG) is severely blunted. Further studies with MA-10(P+29) show that the ability of hCG to stimulate adenylyl cyclase activity is normal. The failure of MA-10(P+29) cells to accumulate cAMP in response to hCG can be correlated with a similar reduction in hCG-stimulated steroidogenesis. On the other hand, the maximal steroidogenic response of MA-10(P+29) cells to dibutyryl cAMP, a cAMP analogue that is fairly resistant to phosphodiesterase degradation, is normal. We also show that the ability of these cells to respond to hCG with increased cAMP accumulation and steroid synthesis can be restored with a specific phosphodiesterase inhibitor. These results demonstrate that overexpression of a cAMP-phosphodiesterase in MA-10 cells limits the levels of cAMP attained under hCG stimulation and supresses the steroidogenic response of these cells to hCG. Since gonadotropins increase the cAMP-phosphodiesterase activity in their target cells, these findings also provide evidence that this regulation plays a major role in the modulation of cell responsiveness. Last, these new cell lines should be valuable in the study of the actions of cAMP because they express a conditional and reversible cAMP-resistant phenotype. 相似文献
14.
Evidence for the functional coupling of cyclic AMP in MA-10 mouse Leydig tumour cells 总被引:1,自引:0,他引:1
A number of studies have indicated that increased production of steroids can be obtained with doses of tropic hormone which do not result in detectable increases in intracellular cAMP. It has been suggested that this may be a result of compartmentalization or functional coupling of cAMP generated by hormone-receptor interactions to specific steroid producing pathways in the cell. In the present study we have stimulated the MA-10 mouse Leydig tumour cell with hCG, dibutyryl cAMP (dbcAMP) and forskolin to determine if functional coupling of cAMP occurs. Treatment with hCG, dbcAMP and forskolin all resulted in significant increases in the production of progesterone, the major steroid produced in these cells. Stimulation with hCG followed by 2D-PAGE analysis of the proteins resulted in the appearance of two proteins in the 30,000 molecular weight range (pI 6.8 and 6.6) and two in the 25,000-27,000 region (pI 5.9-6.0). Stimulation with dbcAMP or forskolin resulted in the appearance of the same proteins seen with hCG, but also in the appearance of two additional proteins, also having molecular weights of approximately 30,000 (pI 6.3 and 6.1). These data indicate that cAMP generated via hCG stimulation, whilst able to generate similar amounts of progesterone, does not stimulate the synthesis of the same proteins as does cAMP added exogenously or generated through indiscriminate activation of adenylate cyclase activity. Thus, it would appear that the gonadotropin activated pathway generates cAMP which remains functionally compartmentalized within the cell. 相似文献
15.
Epidermal growth factor increases the labeling of phosphatidylinositol 3,4-bisphosphate in MA-10 Leydig tumor cells 总被引:8,自引:0,他引:8
Previous studies from this laboratory have shown that mouse epidermal growth factor (mEGF) modulates the hormonal responsiveness of MA-10 Leydig tumor cells without affecting cell multiplication. In an attempt to characterize the intracellular signaling systems activated by mEGF in this cell type, we examined its effects on the labeling of phosphatidylinositols in cells that had been preincubated with different radioactive precursors. Here we report that exposure of MA-10 cells to mEGF, but not other ligands that affect their differentiated function, results in an increase in the labeling of an unusual phosphatidylinositol that does not appear to be present in unstimulated cells. This phosphatidylinositol has been identified as phosphatidylinositol 3,4-bisphosphate. 相似文献
16.
Catecholamine-induced stimulation of testosterone production by Leydig cells from fetal mouse testis 总被引:1,自引:0,他引:1
In contrast to the strong stimulation of testosterone production by hCG, L-isoproterenol had little effect on freshly isolated Leydig cells from 18-day-old mouse fetuses. However, the ability of fetal Leydig cells to respond to L-isoproterenol exposure increased during culture (0-24 h). The response of the cultured cells to L-isoproterenol was dose-dependent with an ED50 at 2 X 10(-7) M. Adrenaline and noradrenaline at a concentration of 10(-5) M also increased testosterone production by cultured fetal Leydig cells. DL-Propranolol, a beta-antagonist, inhibited L-isoproterenol-stimulated testosterone production in a dose-dependent manner, while phentolamine, an alpha-adrenergic antagonist, had no effect. These results suggest that catecholamines may play an essential role in the control of testicular steroidogenesis during fetal development. 相似文献
17.
Nakagawa R Sakai Y Takashima A Terada T Kobayashi A Maeda M 《Biochemical and biophysical research communications》2001,283(2):412-416
A nuclear extract of the mouse I-10 Leydig tumor cell line was analyzed by gel mobility shift assay with a combination of antibodies for various mammalian GATA proteins. Antibodies for GATA-4 caused a super-shift of the DNA-protein complex, which is formed through GATA-4 binding to an oligonucleotide with a typical GATA motif, while ones for GATA-1, GATA-2, GATA-3, and GATA-6 did not. These results indicated that I-10 cells express GATA-4 protein. Western blotting analysis of cellular proteins also demonstrated the presence of GATA-4 protein, the size of which corresponds to that of the rat orthologous protein transiently expressed in Cos-1 cells. A significant level of GATA-4 expression in I-10 cells would be advantageous for studying the roles of this protein, especially in view of gonadal function. We further examined the binding site preference of GATA-4 expressed in I-10 cells. GATA-4 showed broad sequence specificity similar to GATA-6, the order of binding core site preference being GATA > GATT > GATC, and adenine was favored on both sides of the core for strong binding. Thus the conserved zinc finger domain of GATA proteins is suggested to contribute to the binding sequence preference. GATA-4 expressed in I-10 cells was not susceptible to proteolysis coupled with cAMP signaling. 相似文献
18.
The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG), stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF) and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes. 相似文献
19.
Rao RM Jo Y Leers-Sucheta S Bose HS Miller WL Azhar S Stocco DM 《Biology of reproduction》2003,68(1):114-121
The rat R2C Leydig tumor cell line is constitutively steroidogenic in nature, while the mouse MA-10 Leydig tumor cell line synthesizes large amounts of steroids only in response to hormonal stimulation. Earlier studies showed abundant cAMP-independent steroid production and constitutive expression of steroidogenic acute regulatory (StAR) protein in R2C cells. The objective of the current study was to identify possible genetic alterations in the R2C cell line responsible for rendering it a constitutively steroidogenic cell line, especially those that might have altered its cholesterol homeostatic mechanisms. Measurement of the levels of cholesterol esters and free cholesterol, precursors for steroidogenesis, indicated that R2C mitochondria were fourfold enriched in free cholesterol content compared with MA-10 mitochondria. In addition to the previously demonstrated increased expression of StAR protein, we show that R2C cells possess marginally enhanced protein kinase A activity, exhibit higher capacity to take up extracellular cholesterol esters, and express much higher levels of scavenger receptor-type B class 1 (SR-B1) and hormone sensitive lipase (HSL). These observations suggest that the high level of steroid biosynthesis in R2C cells is a result of the constitutive expression of the components involved in the uptake of cholesterol esters (SR-B1), their conversion to free cholesterol (HSL), and its mobilization to the inner mitochondrial membrane (StAR). 相似文献
20.
In the present study, we investigated the signaling pathway involved in luteinizing hormone (LH)-mediated regulation of testicular CYP1B1 in mouse MA-10 and rat R2C Leydig cells. CYP1B1 mRNA and protein levels were measured in MA-10 and R2C cells treated with LH and protein kinase activators or inhibitors. Treatment with LH or 8-bromo-cAMP, a protein kinase A (PRKA) activator, increased CYP1B1 expression and PRKA activity in a concentration-dependent manner in both cell lines, albeit to different extents. Treatment with 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, a PRKA inhibitor, decreased basal CYP1B1 expression and attenuated LH-elicited increases in CYP1B1 mRNA and protein levels and PRKA activity. In contrast, treatment with a protein kinase G activator or an inhibitor of protein kinase C had no effect on basal or LH-induced CYP1B1 expression in MA-10 or R2C cells. Collectively, the results identify PRKA as the major signaling pathway involved in the LH-mediated regulation of testicular CYP1B1 expression in Leydig tumor cells. 相似文献