首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a quantitative method to characterize growth and differentiation dynamics of multipotent cells from time series carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE) division tracking data. The dynamics of cell proliferation and differentiation was measured by combining (CFDA-SE) division tracking with phenotypic analysis. We define division tracking population statistics such as precursor cell frequency, generation time and renewal rate that characterize growth of various phenotypes in a heterogeneous culture system. This method is illustrated by study of the divisional recruitment of cord blood CD34(+) cells by hematopoietic growth factors. The technical issue of assigning the correct generation number to cells was addressed by employing high-resolution division tracking methodology and daily histogram analysis. We also quantified division-tracking artifacts such as CFDA-SE degeneration and cellular auto-fluorescence. Mitotic activation of cord blood CD34(+) cells by cytokines commenced after 2 days of cytokine stimulation. Mean generation number increased linearly thereafter, and it was conclusively shown that CD34(+) cells cycle slower than CD34(-) cells. Generation times for CD34(+) and CD34(-) cells were 24.7 +/- 0.8 h and 15.1 +/- 0.9 h (+/-SD, n = 5), respectively. The 20-fold increase in CD34(+) cell numbers at Day 6 could be attributed to a high CD34(+) cell renewal rate (91% +/- 2% per division). Although cultures were initiated with highly purified CD34(+) cells (approximately 96%), CD34(-) numbers had expanded rapidly by Day 6. This rapid expansion could be explained by their short generation time as well as a small fraction of CD34(+) cells (approximately 5%) that differentiated into CD34(-) cells. Multitype division tracking provides a detailed analysis of multipotent cell differentiation dynamics.  相似文献   

2.
Analysis of MM14 mouse myoblasts demonstrates that terminal differentiation is repressed by pure preparations of both acidic and basic fibroblast growth factor (FGF). Basic FGF is approximately 30-fold more potent than acidic FGF and it exhibits half maximal activity in clonal assays at 0.03 ng/ml (2 pM). FGF repression occurs only during the G1 phase of the cell cycle by a mechanism that appears to be independent of ongoing cell proliferation. When exponentially growing myoblasts are deprived of FGF, cells become postmitotic within 2-3 h, express muscle-specific proteins within 6-7 h, and commence fusion within 12-14 h. Although expression of these three terminal differentiation phenotypes occurs at different times, all are initiated by a single regulatory "commitment" event in G1. The entire population commits to terminal differentiation within 12.5 h of FGF removal as all cells complete the cell cycle and move into G1. Differentiation does not require a new round of DNA synthesis. Comparison of MM14 behavior with other myoblast types suggests a general model for skeletal muscle development in which specific growth factors serve the dual role of stimulating myoblast proliferation and directly repressing terminal differentiation.  相似文献   

3.
It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00 arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis.  相似文献   

4.
Regulation of MyoD function in the dividing myoblast   总被引:12,自引:0,他引:12  
Wei Q  Paterson BM 《FEBS letters》2001,490(3):171-178
Proliferating myoblasts express MyoD, yet no phenotypic markers are activated as long as mitogen levels are sufficient to keep the cells dividing. Depending upon mitogen levels, a decision is made in G1 that commits the myoblast to either continue to divide or to exit from the cell cycle and activate terminal differentiation. Ectopic expression of MyoD under the control of the RSV or CMV promoters causes 10T1/2 cells to rapidly exit the cell cycle and differentiate as single myocytes, even in growth medium, whereas expression of MyoD under the weaker SV40 promoter is compatible with proliferation. Co-expression of MyoD and cyclin D1, but not cyclins A, B, E or D3, blocks transactivation of a MyoD responsive reporter. Similarly, transfection of myoblasts with the cyclin-dependent kinase (cdk) inhibitors p16 and p21 supports some muscle-specific gene expression even in growth medium. Taken altogether, these results suggest cell cycle progression negatively regulates myocyte differentiation, possibly through a mechanism involving the D1 responsive cdks. We review evidence coupling growth status, the cell cycle and myogenesis. We describe a novel mitogen-sensitive mechanism that involves the cyclin D1-dependent direct interaction between the G1 cdks and MyoD in the dividing myoblast, which regulates MyoD function in a mitogen-sensitive manner.  相似文献   

5.
Regulation of the transition of mouse myoblasts from proliferation to terminal differentiation was studied with clonal density cultures of a permanent clonal myoblast cell line. In medium lacking mitogenic activity, mouse myoblasts withdraw from the cell cycle, elaborate muscle-specific gene products, and fuse to form multinucleated myotubes. Addition of a purified mitogen, fibroblast growth factor, to mitogen-depleted medium stimulates continued proliferation and prevents terminal differentiation. When mitogens are removed for increasing durations and then refed, mouse myoblasts irreversibly commit to terminal differentiation: after 2–4 h in the absence of mitogens, myoblasts withdraw from the cell cycle, elaborate muscle-specific gene products, and fuse in the presence of mitogens that have been fed back. Population kinetics of commitment determined with 3H-thymidine labeling and autoradiography suggest the following cell-cycle model for mouse myoblast commitment: (1) if mitogens are present in the extracellular environment of myoblasts in G1 of the cell cycle, the cells enter S and continue through another cell cycle; (2) if mitogens have been absent for 2 or more hours, cells in G1 do not enter S; the cells commit to differentiate, permanently withdraw from the cell cycle (will not enter S if mitogens are refed), and they subsequently elaborate acetylcholine receptors and fuse (even if mitogens are refed); (3) cells in other phases of the cell cycle continue to transit the cell cycle in the absence of mitogens until reaching the next G1. The commitment kinetics and experiments with mitotically synchronized cells suggest that the commitment “decision” is made during G1. Present results do not, however, exclude commitment of some cells in other phases of the cell cycle.  相似文献   

6.
7.
8.
Estradiol-17 beta treatment of adult male Xenopus laevis induces liver parenchymal cells to synthesize DNA and proliferate. DNA synthesis begins 3 to 4 days after estrogen treatment and continues for approximately 10 days. Over this 2-week period, the total number of liver parenchymal cells increases fourfold, the wet weight of the liver remains constant, and there is a 50% reduction in cell volume. The elevated number of cells persists for several months and then returns to the control value. The extent of proliferation is hormone dose dependent. Pulse-chase experiments demonstrate that as a result of hormone treatment a minority of the parenchymal cells in the initial population enter the cell cycle, and via repeated divisions become the majority (79%) of the population by Day 14. The implications of this phenomenon for estrogen-induced liver cell differentiation and vitellogenin gene function are discussed.  相似文献   

9.
Summary Our previous studies have demonstrated that expression of growth-associated genes is regulated by the adhesive state of the cell. To understand the role of cell adhesion in regulating the switch from growth to differentiation, we are studying the differentiation of mouse myoblasts into multinucleated contractile myotubes. In this report, we describe a novel means of culturing C2C12 myoblasts that permits an analysis of the role of cell adhesion in regulating the sequential induction of muscle-specific genes that control myogenesis. Suspension of an asynchronous, proliferating population of myoblasts in a viscous gel of methylcellulose dissolved in medium containing 20% serum induces growth arrest in G0 phase of the cell cycle without a concomitant induction of muscle-specific genes. Reattachment to a solid substratum in 20% serum, 0.5nM bFGF, or 10 nM IGF-1 rapidly activates entry of the quiescent cells into G1 followed by a synchronous progression of the cell population through into S phase. bFGF or IGF-1 added separately facilitate only one passage through the cell cycle, whereas 20% serum or the two growth factors added together support multiple cell divisions. Adhesion of suspended cells in DMEM alone or with 3 nM IGF-1 induces myogenesis as evidenced by the synthesis of myogenin and myosin heavy chain (MHC) proteins followed by fusion into myotubes. bFGF completely inhibits this differentiation process even in the presence of myogenic doses of IGF-1. Addition of 3 nM IGF-1 to quiescent myoblasts maintained in suspension culture in serum-free conditions does not induce myogenin or MHC expression. Thus, adhesion is a requirement for the induction of muscle gene expression in mouse myoblasts. The development of a muscle cell culture environment in which proliferating myoblasts can be growth arrested in G0 without activating muscle-specific gene expression provides a means of analyzing the synchronous activation of either the myogenic or growth programs and how adhesion affects each process, respectively. Supported by training grant T32-HL07035  相似文献   

10.
We identify here the multiple epidermal growth factor repeat transmembrane protein Megf10 as a quiescent satellite cell marker that is also expressed in skeletal myoblasts but not in differentiated myofibers. Retroviral expression of Megf10 in myoblasts results in enhanced proliferation and inhibited differentiation. Infected myoblasts that fail to differentiate undergo cell cycle arrest and can reenter the cell cycle upon serum restimulation. Moreover, experimental modulations of Megf10 alter the expression levels of Pax7 and the myogenic regulatory factors. In contrast, Megf10 silencing in activated satellite cells on individual fibers or in cultured myoblasts results in a dramatic reduction in the cell number, caused by myogenin activation and precocious differentiation as well as a depletion of the self-renewing Pax7+/MyoD population. Additionally, Megf10 silencing in MyoD/ myoblasts results in down-regulation of Notch signaling components. We conclude that Megf10 represents a novel transmembrane protein that impinges on Notch signaling to regulate the satellite cell population balance between proliferation and differentiation.  相似文献   

11.
The small GTPase protein Rac1 is involved in a wide range of biological processes, yet its role in cell differentiation is mostly unknown. Here we show that Rac1 activity is high in proliferating myoblasts and decreases during the differentiation process. To analyze the involvement of Rac1 in muscle differentiation, different forms of the protein were expressed in muscle cells. A constitutively activated form of Rac1 (Rac1Q61L) inhibited the activity of MyoD in promoting muscle differentiation, whereas a dominant negative form of Rac1 (Rac1T17N) induced the activity of MyoD in promoting muscle differentiation. Expression of Rac1T17N imposed myogenic differentiation on myoblasts growing under mitogenic conditions. In inquiring whether Rac1 affected the withdrawal of myoblasts from the cell cycle, we analyzed the expression of cyclin D1 and p21(WAF1) and the phosphorylation state of the retinoblastoma protein. According to these markers and bromodeoxyuridine incorporation, C2 myoblasts expressing Rac1T17N exited the cell cycle earlier than control C2 cells. Myoblasts expressing Rac1Q61L did not permanently withdraw from the cell cycle. An indication of the possible involvement of the mitogen-activated protein kinase (MAPK) pathway in Rac1-mediated myoblast proliferation was obtained by the use of MAPK kinase inhibitors U0126 and PD098059. These inhibitors arrested C2-Rac1Q61L cell cycling. Taken together, our results show that Rac1 activation interferes with myoblast exit from the cell cycle via or in concert with the MAPK pathway.  相似文献   

12.
The expression of fast and slow isoforms of the sarcoplasmic reticulum Ca2+-ATPase was studied in the developing chick embryo and in tissue-cultured myotubes. Monoclonal antibodies specific for each isoform were used as probes of protein expression. Analysis of expression of Ca2+-ATPase isoforms in chick thigh muscles by immunofluorescence microscopy revealed that all muscle fibers expressed both isoforms during their development. Primary generation muscle fibers expressed predominantly the slow isoform. Secondary generation fibers expressed both isoforms at comparable levels. Loss of the "inappropriate" isoforms occurred late in embryonic development. Immunoblot analysis of embryonic thigh muscle proteins indicated that the expression of the slow isoform varied little from embryonic Day 6 (ED6) to ED19, while expression of the fast isoform increased dramatically just prior to ED19. Tissue-cultured myotubes derived from ED12 chick thigh muscle myoblasts, plated at high density, expressed both isoforms of the Ca2+-ATPase at very similar levels. Clonal analysis of myoblasts taken from early (ED6) and late (ED12) chick thigh muscles showed that all muscle colonies expressed both forms, consistent with in vivo results. Fiber-type specific isoforms of the Ca2+-ATPase and myosin heavy chain are not coordinately expressed in developing chick skeletal muscle.  相似文献   

13.
Foetal cells secrete more growth factors, generate less immune response, grow and proliferate better than adult cells. These characteristics make them desirable for recombinant modification and use in microencapsulated cellular gene therapeutics. We have established a system in vitro to obtain a pure population of primary human foetal myoblasts under several rounds of selection with non-collagen coated plates and identified by desmin staining. These primary myoblasts presented good proliferation ability and better differentiation characteristics in monolayer and after microencapsulation compared to murine myoblast C2C12 cells based on creatine phosphokinase (CPK), major histocompatibility complex (MHC) and multi-nucleated myotubule determination. The lifespan of primary myoblasts was 70 population doublings before entering into senescent state, with a population time of 18-24 hrs. Hence, we have developed a protocol for isolating human foetal primary myoblasts with excellent differentiation potential and robust growth and longevity. They should be useful for cell-based therapy in human clinical applications with microencapsulation technology.  相似文献   

14.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

15.
Stathmokinetic analysis of human epidermal cells in vitro   总被引:1,自引:0,他引:1  
Proliferation kinetics of cultured human epidermal cells is characterized in quantitative terms. Three distinct subpopulations of keratinocytes, two of which are cycling, have been discriminated by two parameter DNA/RNA flow cytometry. Based on mathematical modelling, the cell cycle parameters of the cycling subpopulations have been assessed from stathmokinetic data collected at different time points after initiation of cultures (7-15 days). The first subpopulation is composed of low-RNA cells which resemble basal keratinocytes of epidermis and which show some characteristics of stem cells; these cells have a mean generation time of approximately 100 hr. The second subpopulation consists of high-RNA cells, resembling stratum spinosum cells of epidermis, which have an average generation time of approximately 40 hr. The third subpopulation consists of non-cycling cells with G0/G1 DNA content, with cytochemical features similar to those of cells in granular layer of epidermis. The results based on modelling can reproduce with acceptable accuracy the actual growth curve of the cultured cell population. Analysis of kinetics and differentiation of human keratinocytes is of interest in view of the recent application of cultured epidermal cell sheets for transplantation onto burn wounds. The results of this study also reveal the existence of regulatory mechanisms associated with proliferation and differentiation in the cultured epidermal cell population.  相似文献   

16.
How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation.  相似文献   

17.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

18.
Differentiation of quail myoblasts, isolated from thigh pectoralis and anterior latissimus dorsi muscle, was analyzed in primary cultures and in cultures obtained following repeated subculturing. Our study shows that quail myoblasts can survive many generations without losing their ability to form myotubes. However, during these subcultures the cells progressively express a new phenotype. This phenotype is characterized by a mixture of myosin light chains such that LC1F, LC2F, and LC2S are present in roughly equimolar amounts, each accounting for 25 to 30% of the total light chain synthesis while LC1S accounts for the remaining 10 to 15%, and by a mixture of fast and slow alpha tropomyosin in which alpha S accounts for 10 to 15% of the alpha subunits synthesis. Clonal analysis indicates that all cells in the population express this phenotype which is also characteristic of subcultures obtained from both future fast and slow muscles. Relationships between this phenotype and muscle development are discussed.  相似文献   

19.
GH4C1 cells (CH cells) are a clonal strain of rat pituitary tumor cells which secrete prolactin. We measured intracellular prolactin at different stages of the cell cycle using flow microfluorometry. Prolactin was stained by an indirect immunocytochemical technique using fluorescein isothiocyanate (FITC)-conjugated antiserum, and DNA was stained simultaneously with propidium iodide. We found that prolactin storage in GH cells was cell-cycle dependent; prolactin storage increased as cells passed from G1 to S to G2 + M. We have shown previously that insulin and 17 beta-estradiol act synergistically to increase intracellular prolactin three- to sevenfold and slow the rate of cell growth to approximately 70% of control cells. In this study we observed that insulin and estradiol increased prolactin storage at each stage of the cell cycle but did not affect the cell-cycle distribution of the population even though cell growth was slowed. We conclude that insulin and estradiol did not increase prolactin storage by affecting the cell-cycle distribution of the population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号