首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
2.
3.
Translational control of GCN4 expression in the yeast Saccharomyces cerevisiae is mediated by multiple AUG codons present in the leader of GCN4 mRNA, each of which initiates a short open reading frame of only two or three codons. Upstream AUG codons 3 and 4 are required to repress GCN4 expression in normal growth conditions; AUG codons 1 and 2 are needed to overcome this repression in amino acid starvation conditions. We show that the regulatory function of AUG codons 1 and 2 can be qualitatively mimicked by the AUG codons of two heterologous upstream open reading frames (URFs) containing the initiation regions of the yeast genes PGK and TRP1. These AUG codons inhibit GCN4 expression when present singly in the mRNA leader; however, they stimulate GCN4 expression in derepressing conditions when inserted upstream from AUG codons 3 and 4. This finding supports the idea that AUG codons 1 and 2 function in the control mechanism as translation initiation sites and further suggests that suppression of the inhibitory effects of AUG codons 3 and 4 is a general consequence of the translation of URF 1 and 2 sequences upstream. Several observations suggest that AUG codons 3 and 4 are efficient initiation sites; however, these sequences do not act as positive regulatory elements when placed upstream from URF 1. This result suggests that efficient translation is only one of the important properties of the 5' proximal URFs in GCN4 mRNA. We propose that a second property is the ability to permit reinitiation following termination of translation and that URF 1 is optimized for this regulatory function.  相似文献   

4.
5.
X Chen  K L Kindle    D B Stern 《The Plant cell》1995,7(8):1295-1305
To study translation initiation in Chlamydomonas chloroplasts, we mutated the initiation codon AUG to AUU, ACG, ACC, ACU, and UUC in the chloroplast petA gene, which encodes cytochrome f of the cytochrome b6/f complex. Cytochrome f accumulated to detectable levels in all mutant strains except the one with a UUC codon, but only the mutant with an AUU codon grew well at 24 degrees C under conditions that require photosynthesis. Because no cytochrome f was detectable in the UUC mutant and because each mutant that accumulated cytochrome f did so at a different level, we concluded that any residual translation probably initiates at the mutant codon. As a further demonstration that alternative initiation sites are not used in vivo, we introduced in-frame UAA stop codons immediately downstream or upstream or in place of the initiation codon. Stop codons at or downstream of the initiation codon prevented accumulation of cytochrome f, whereas the one immediately upstream of the initiation codon had no effect on the accumulation of cytochrome f. These results suggest that an AUG codon is not required to specify the site of translation initiation in chloroplasts but that the efficiency of translation initiation depends on the identity of the initiation codon.  相似文献   

6.
7.
C U Hellen  T V Pestova    E Wimmer 《Journal of virology》1994,68(10):6312-6322
Initiation of poliovirus translation is mediated by a large, structured segment of the 5' nontranslated region known as the internal ribosome entry site (IRES) and normally occurs 155 nucleotides (nt) downstream of the IRES at AUG743 (the AUG at nucleotide 743). Functional AUG codons introduced at nt 611 or 614 reduced initiation at AUG743 by 10 to 40% in vitro but had no effect on virus phenotype. To investigate the role of the nt 586-743 spacer in greater detail, four intervening termination codons were removed, and an additional AUG triplet at nt 683 was introduced by nucleotide substitution. Initiation at AUG743 was reduced by only 50 to 80%, depending on the number of upstream initiation codons. Initiation at AUG743 was also reduced following insertion of a stable hairpin at nt 630, but the reduction was modest in an ascites carcinoma cell extract. Initiation was more frequent at AUG743 than at AUG683 if mRNAs contained either an upstream initiation codon or the stable hairpin. These results suggested that not all initiation events at AUG743 can be accounted for by a scanning-dependent mechanism. Translation of bicistronic mRNAs in which the intercistronic spacer contained nt 630 to 742 of the poliovirus 5' nontranslated region indicated that these residues are not able to act as an entry point for ribosomes independently of the IRES. Insertion of increasingly longer sequences immediately downstream of the stable hairpin progressively reduced initiation at AUG743 without affecting initiation at AUG683. These results are discussed in terms of a model for initiation of poliovirus translation in which a complex RNA superstructure upstream of nt 586 promotes ribosome binding at an entry point determined by specific downstream cis-acting elements.  相似文献   

8.
Biosynthesis of human fibroblast growth factor-5.   总被引:9,自引:3,他引:6       下载免费PDF全文
We have analyzed the biosynthesis of human fibroblast growth factor-5 (FGF-5) at the translational and posttranslational levels. FGF-5 RNA synthesized in vitro can be translated in rabbit reticulocyte lysates to yield a 29,500-Da protein, which is consistent with the molecular weight predicted from the coding sequence. The efficiency of FGF-5 translation is dramatically enhanced if an upstream open reading frame (ORF-1) in the RNA is deleted or if both AUG codons in ORF-1 are destroyed by point mutations, while partial enhancement is achieved by individual mutation of either ORF-1 AUG codon. These data suggest that FGF-5 synthesis requires the scanning of ribosomes past the two ORF-1 AUG codons. The introduction of these ORF-1 mutations into a eukaryotic FGF-5 expression vector increases its capacity to transform mouse NIH 3T3 cells up to 50-fold upon transfection. FGF-5 is secreted from transfected 3T3 cells and from human tumor cells as glycoproteins containing heterogeneous amounts of sialic acid. Glycosidase treatments suggest that the growth factor bears both N-linked and O-linked sugars.  相似文献   

9.
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.  相似文献   

10.
The selection of the site for initiation of translation for the Saccharomyces cerevisiae NFS1 gene was examined using mutated AUG1, AUG2 and AUG3 codons. When AUG1 of the yeast NFS1 gene was mutated to UUG and the resulting mRNA was translated in vitro using a reticulocyte system, initiation from the mutated codon was abolished and occurred instead at downstream codons at increased rates. When the same mRNA was translated using a yeast extract, translation initiated at the mutated codon, albeit at a reduced rate, and there was no increased translation at downstream AUG codons. The NFS1 gene in which AUG1 was replaced by UUG was also able to substitute for the wild-type gene in vivo in yeast. Western blots confirmed that the encoded protein was the same size as that encoded by the wild-type gene and that both the wild-type and mutated proteins localized to mitochondria. This is apparently the first example of a yeast protein where mutagenesis of AUG1 does not lead to alternate use of a downstream AUG.  相似文献   

11.
The third and fourth AUG codons in GCN4 mRNA efficiently repress translation of the GCN4-coding sequences under normal growth conditions. The first AUG codon is approximately 30-fold less inhibitory and is required under amino acid starvation conditions to override the repressing effects of AUG codons 3 and 4. lacZ fusions constructed to functional, elongated versions of the first and fourth upstream open reading frames (URFs) were used to show that AUG codons 1 and 4 function similarly as efficient translational start sites in vivo, raising the possibility that steps following initiation distinguish the regulatory properties of URFs 1 and 4. In accord with this idea, we observed different consequences of changing the length and termination site of URF1 versus changing those of URFs 3 and 4. The latter were lengthened considerably, with little or no effect on regulation. In fact, the function of URFs 3 and 4 was partially reconstituted with a completely heterologous URF. By contrast, certain mutations that lengthen URF1 impaired its positive regulatory function nearly as much as removing its AUG codon did. The same mutations also made URF1 a much more inhibitory element when it was present alone in the mRNA leader. These results strongly suggest that URFs 1 and 4 both function in regulation as translated coding sequences. To account for the phenotypes of the URF1 mutations, we suggest the most ribosomes normally translate URF1 and that the mutations reduce the number of ribosomes that are able to complete URF1 translation and resume scanning downstream. This effect would impair URF1 positive regulatory function if ribosomes must first translate URF1 in order to overcome the strong translational block at the 3'-proximal URFs. Because URF1-lacZ fusions were translated at the same rate under repressing and derepressing conditions, it appears that modulating initiation at URF1 is not the means that is used to restrict the regulatory consequences of URF1 translation to starvation conditions.  相似文献   

12.
The Rous sarcoma virus (RSV) leader RNA has three short open reading frames (ORF1 to ORF3) which are conserved in all avian sarcoma-leukosis retroviruses. Effects on virus propagation were determined following three types of alterations in the ORFs: (i) replacement of AUG initiation codons in order to prohibit ORF translation, (ii) alterations of the codon context around the AUG initiation codon to enhance translation of the normally silent ORF3, and (iii) elongation of the ORF coding sequences. Mutagenesis of the AUG codons for ORF1 and ORF2 (AUG1 and AUG2) singly or together delayed the onset of viral replication and cell transformation. In contrast, mutagenesis of AUG3 almost completely suppressed these viral activities. Mutagenesis of ORF3 to enhance its translation inhibited viral propagation. When the mutant ORF3 included an additional frameshift mutation which extended the ORF beyond the initiation site for the gag, gag-pol, and env proteins, host cells were initially transformed but died soon thereafter. Elongation of ORF1 from 7 to 62 codons led to the accumulation of transformation-defective virus with a delayed onset of replication. In contrast, viruses with elongation of ORF1 from 7 to 30 codons, ORF2 from 16 to 48 codons, or ORF3 from 9 to 64 codons, without any alterations in the AUG context, exhibited wild-type phenotypes. These results are consistent with a model that translation of the ORFs is necessary to facilitate virus production.  相似文献   

13.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

14.
The translation efficiency of an mRNA molecule is typically determined by its 5'- and/or 3'-untranslated regions (UTRs). Previously, we have found that the 3'-UTR of Turnip yellow mosaic virus (TYMV) RNA enhances translation synergistically with a 5' cap. Here, we use a luciferase reporter system in cowpea protoplasts to show that the 5' 217 nucleotides from TYMV genomic RNA enhance expression relative to a vector-derived 17-nucleotide 5'-UTR. Maximum expression was observed from RNAs with a cap and both 5' and 3' TYMV sequences. In paired reporter constructs, the 5' 217 nucleotides harboring the UTR and the first 43 or 41 codons of the two overlapping TYMV open reading frames (ORFs), ORF-69 and ORF-206, respectively, were fused in frame with the luciferase gene. This allowed expression from the initiation codon of each ORF (AUG69 and AUG206) to be monitored separately but from the normal sequence environment. Expression from both AUG codons was heavily dependent on a 5' cap, with a threefold-higher expression occurring from AUG69 than from AUG206 in the presence of the genomic 3'-UTR. Changes that interrupted the cap/3'-UTR synergy (i.e., removal of the cap or TYMV 3'-UTR) resulted in a higher proportion of initiation from AUG206. Mutation of the 3'-UTR to prevent aminoacylation, as well as deletion of 75% of the 5'-UTR, likewise resulted in a lower ratio of expression from AUG69 relative to AUG206. Mutation of each AUG initiation codon increased initiation from the other. Taken together, these results do not fully conform to the expectations of standard leaky ribosomal scanning and leave open the precise mechanism of ribosome commitment to AUG69 and AUG206. However, our observations do not support a recent proposal based on in vitro studies in which the 3'-UTR is proposed to direct cap-independent initiation specifically at AUG206 and not at AUG69 (S. Barends et al., Cell 112:123-129, 2003).  相似文献   

15.
TYMV RNA supports the translation of two proteins, p69 and p206, from AUG initiation codons 7 nucleotides apart. We have studied the translation of this overlapping dicistronic mRNA with luciferase reporter RNAs electroporated into cowpea protoplasts and in toe-printing studies that map ribosomes stalled during initiation in wheat germ extracts. Agreement between these two assays indicates that the observed effects reflect ribosome initiation events. The robust expression from the downstream AUG206 codon was dependent on its closeness to the upstream AUG69 codon. Stepwise separation of these codons resulted in a gradual increase in upstream initiation and decrease in downstream initiation, and expression was converted from dicistronic to monocistronic. Selection by ribosomes for initiation between the nearby AUG codons was responsive to the sequence contexts that govern leaky scanning, but the normally strong position effect favoring upstream initiation was greatly diminished. Similar dicistronic expression was supported for RNAs with altered initiation sequences and for RNAs devoid of flanking viral sequences. Closely spaced AUG codons may thus represent an under-recognized strategy for bicistronic expression from eukaryotic mRNAs. The initiation behavior observed in these studies suggests that 5'-3' ribosome scanning involves backward excursions averaging about 15 nucleotides.  相似文献   

16.
The gene encoding human hemojuvelin (HJV) is one of the genes that, when mutated, can cause juvenile hemochromatosis, an early-onset inherited disorder associated with iron overload. The 5′ untranslated region of the human HJV mRNA has two upstream open reading frames (uORFs), with 28 and 19 codons formed by two upstream AUGs (uAUGs) sharing the same in-frame stop codon. Here we show that these uORFs decrease the translational efficiency of the downstream main ORF in HeLa and HepG2 cells. Indeed, ribosomal access to the main AUG is conditioned by the strong uAUG context, which results in the first uORF being translated most frequently. The reach of the main ORF is then achieved by ribosomes that resume scanning after uORF translation. Furthermore, the amino acid sequences of the uORF-encoded peptides also reinforce the translational repression of the main ORF. Interestingly, when iron levels increase, translational repression is relieved specifically in hepatic cells. The upregulation of protein levels occurs along with phosphorylation of the eukaryotic initiation factor 2α. Nevertheless, our results support a model in which the increasing recognition of the main AUG is mediated by a tissue-specific factor that promotes uORF bypass. These results support a tight HJV translational regulation involved in iron homeostasis.  相似文献   

17.
18.
Translational control of human cytomegalovirus gp48 expression.   总被引:10,自引:3,他引:7       下载免费PDF全文
  相似文献   

19.
The mechanism leading to reinitiation of translation after termination of protein synthesis in eukaryotes has not yet been resolved in detail. One open question concerns the way the post-termination ribosome is tethered to the mRNA to allow binding of the necessary initiation factors. In caliciviruses, a family of positive strand RNA viruses, the capsid protein VP2 is translated via a termination/reinitiation process. VP2 of the feline calicivirus is encoded in the 3'-terminal open reading frame 3 (ORF3) that overlaps with the preceding ORF2 by four nucleotides. In transient expression studies, the efficiency of VP2 expression was 20 times lower than that of the ORF2 proteins. The close vicinity of the ORF2 termination signal and the ORF3 AUG codon was crucial, whereas the AUG could be replaced by alternative codons. Deletion mapping revealed that the 3'-terminal 69 nucleotides of ORF2 are crucial for VP2 expression. This sequence contains two essential sequence motifs. The first motif is conserved among caliciviruses and complementary to part of the 18 S rRNA. In conclusion, VP2 is expressed in a translation termination/reinitiation process that is special because it requires a sequence element that could prevent dissociation of post-termination ribosomes via hybridization with 18 S rRNA.  相似文献   

20.
AUG-unrelated translation initiation was found in an insect picorna-like virus, Plautia stali intestine virus (PSIV). The positive-strand RNA genome of the virus contains two nonoverlapping open reading frames (ORFs). The capsid protein gene is located in the 3′-proximal ORF and lacks an AUG initiation codon. We examined the translation mechanism and the initiation codon of the capsid protein gene by using various dicistronic and monocistronic RNAs in vitro. The capsid protein gene was translated cap independently in the presence of the upstream cistron, indicating that the gene is translated by internal ribosome entry. Deletion analysis showed that the internal ribosome entry site (IRES) consisted of approximately 250 bases and that its 3′ boundary extended slightly into the capsid-coding region. The initiation codon for the IRES-mediated translation was identified as the CUU codon, which is located just upstream of the 5′ terminus of the capsid-coding region by site-directed mutagenesis. In vitro translation assays of monocistronic RNAs lacking the 5′ part of the IRES showed that this CUU codon was not recognized by scanning ribosomes. This suggests that the PSIV IRES can effectively direct translation initiation without stable codon-anticodon pairing between the initiation codon and the initiator methionyl-tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号