首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was then infused with glucagon (1 nM), isoproterenol (2 microM), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase.  相似文献   

2.
Incubation of adipocytes in glucose-free medium with adrenocorticotrophic hormone, epinephrine, isoproterenol, or norepinephrine increased the concentration of cyclic AMP and the percentage of phosphorylase a activity, and decreased the percentage of glycogen synthase I activity. Glucose was essentially without effect on glycogen synthase or phosphorylase in either the presence or absence of epinephrine. Although glucose potentiated the action of insulin to activate glycogen synthase, the hexose did not enhance the effectiveness of insulin in the presence of epinephrine. Likewise, glucose did not increase the ability of insulin to oppose the activation of phosphorylase by epinephrine.The activation of glycogen synthase by insulin was not associated with a decrease in the concentration of cyclic AMP. Insulin partially blocked the rise in cyclic AMP due to isoproterenol, adrenocorticotrophic hormone, and norepinephrine. The maximum effects of isoproterenol on glycogen synthase and phosphorylase were observed when the concentration of cyclic AMP was increased twofold. However, insulin clearly opposed the changes in enzyme activity produced by isoproterenol (and also adrenocorticotrophic hormone, epinephrine and norepinephrine) even though concentrations of cyclic AMP were still increased three- to fourfold. Nicotinic acid opposed the increases in cyclic AMP due to adrenocorticotrophic hormone, isoproterenol and norepinephrine to the same extent as insulin; however, nicotinic acid was ineffective in opposing the activation of phosphorylase and inactivation of glycogen synthase produced by these agents. Thus, it is unlikely that the effects of insulin on glycogen synthase and phosphorylase result from an action of the hormone to decrease the concentration of cyclic AMP.  相似文献   

3.
The effect of insulin on glycogen synthesis and key enzymes of glycogen metabolism, glycogen phosphorylase and glycogen synthase, was studied in HepG2 cells. Insulin stimulated glycogen synthesis 1.83-3.30 fold depending on insulin concentration in the medium. Insulin caused a maximum of 65% decrease in glycogen phosphorylase 'a' and 110% increase in glycogen synthase activities in 5 min. Although significant changes in enzyme activities were observed with as low as 0.5 nM insulin level, the maximum effects were observed with 100 nM insulin. There was a significant inverse correlation between activities of glycogen phosphorylase 'a' and glycogen synthase 'a' (R2 = 0.66, p < 0.001). Addition of 30 mM glucose caused a decrease in phosphorylase 'a' activity in the absence of insulin and this effect was additive with insulin up to 10 nM concentration. The inactivation of phosphorylase 'a' by insulin was prevented by wortmannin and rapamycin but not by PD98059. The activation of glycogen synthase by insulin was prevented by wortmannin but not by PD98059 or rapamycin. In fact, PD98059 slightly stimulated glycogen synthase activation by insulin. Under these experimental conditions, insulin decreased glycogen synthase kinase-3 activity by 30-50% and activated more than 4-fold particulate protein phosphatase-1 activity and 1.9-fold protein kinase B activity; changes in all of these enzyme activities were abolished by wortmannin. The inactivation of GSK-3 and activation of PKB by insulin were associated with their phosphorylation and this was also reversed by wortmannin. The addition of protein phosphatase-1 inhibitors, okadaic acid and calyculin A, completely abolished the effects of insulin on both enzymes. These data suggest that stimulation of glycogen synthase by insulin in HepG2 cells is mediated through the PI-3 kinase pathway by activating PKB and PP-1G and inactivating GSK-3. On the other hand, inactivation of phosphorylase by insulin is mediated through the PI-3 kinase pathway involving a rapamycin-sensitive p70s6k and PP-1G. These experiments demonstrate that insulin regulates glycogen phosphorylase and glycogen synthase through (i) a common signaling pathway at least up to PI-3 kinase and bifurcates downstream and (ii) that PP-1 activity is essential for the effect of insulin.  相似文献   

4.
Hormonal regulation of hepatic glycogen synthase phosphatase   总被引:1,自引:0,他引:1  
Perfusion of livers from fed rats with medium containing glucagon (2 x 10(-10) or 1 x 10(-8) M) resulted in both time- and concentration-dependent inactivation of glycogen synthase phosphatase. Expected changes occurred in cAMP, cAMP-dependent protein kinase, glycogen synthase, and glycogen phosphorylase. The effect of glucagon on synthase phosphatase was partially reversed by simultaneous addition of insulin (4 x 10(-8) M), an effect paralleled by a decrease in cAMP. Addition of arginine vasopressin (10 milliunits/ml) resulted in a similar inactivation of synthase phosphatase and activation of phosphorylase, but independent of any changes in cAMP or its kinase. Phosphorylase phosphatase activity was unaffected by any of these hormones. Synthase phosphatase activity, measured as the ability of a crude homogenate to catalyze the conversion of purified rat liver synthase D to the I form, was no longer inhibited by glucagon or vasopressin when phosphorylase antiserum was added to the phosphatase assay mixture in sufficient quantity to inhibit 90-95% of the phosphorylase a activity. These data support the following conclusions: 1) hepatic glycogen synthase phosphatase activity is acutely modulated by hormones, 2) hepatic glycogen synthase phosphatase and phosphorylase phosphatase are regulated differently, 3) the hormone-mediated changes in synthase phosphatase cannot be explained by an alteration of the synthase D molecule affecting its behavior as a substrate, and 4) glycogen synthase phosphatase activity is at least partially controlled by the level of phosphorylase a.  相似文献   

5.
The effect of glycogen content on the activation of glycogen phosphorylase during adrenaline stimulation was investigated in soleus muscles from Wistar rats. Furthermore, adrenergic activation of glycogen phosphorylase in the slow-twitch oxidative soleus muscle was compared to the fast-twitch glycolytic epitrochlearis muscle. The glycogen content was 96.4 +/- 4.4 mmol (kg dw)(-1) in soleus muscles. Three hours of incubation with 10 mU/ml of insulin (and 5.5 mM glucose) increased the glycogen content to 182.2+/-5.9 mmol (kg dw)(-1) which is similar to that of epitrochlearis muscles (175.7+/-6.9 mmol (kg dw)(-1)). Total phosphorylase activity in soleus was independent of glycogen content. Adrenaline (10(-6) M) transformed about 20% and 35% (P < 0.01) of glycogen phosphorylase to the a form in soleus with normal and high glycogen content, respectively. In epitrochlearis, adrenaline stimulation transformed about 80% of glycogen phosphorylase to the a form. Glycogen synthase activation was reduced to low level in soleus muscles with both normal and high glycogen content. In conclusion, adrenaline-mediated glycogen phosphorylase activation is enhanced in rat soleus muscles with increased glycogen content. Glycogen phosphorylase activation during adrenaline stimulation was much higher in epitrochlearis than in soleus muscles with a similar content of glycogen.  相似文献   

6.
The effects of insulin, epinephrine, glucose and anti-insulin receptor antibodies on enzymes involved in the regulation of glycogen synthesis were investigared in the isolated mouse soleus muscle. Insulin maximally increased the percentage of glycogen synthase active form after 15 min in the absence of glucose in the extracellular medium; half-maximal and maximal effects were obtained with 1.5 and 33 nM insulin, respectively. The basal percentage of glycogen phosphorylase active form was not altered by insulin. Antibodies to the insulin receptor had similar effects to those of insulin on both enzymes. The percentage of glycogen synthase active form was maximally decreased and that of phosphorylase maximally increased after a 2 min exposure to epinephrine in the absence of extracellular glucose. Glucose alone had no effect on muscle glycogen synthase. When muscles were incubated with insulin (33 nM) plus glucose (20 mM) for 5–10 min, the increase in the percentage of glycogen synthase active form was greater than with insulin alone. This enhancing effect of glucose on insulin activation of glycogen synthase disappeared after 20 min. The results suggest the existence of two mechanisms whereby insulin activates muscle glycogen synthase. The main effect is operative in the absence of extracellular glucose and occurs at insulin concentrations close to the physiological range. The other effect requires glucose and may result from the stimulation by insulin of glucose transport and/or metabolism.  相似文献   

7.
1. Control of glycogen metabolism by various substrates and hormones was studied in ruminant liver using isolated hepatocytes from fed sheep. 2. In these cells glucose appeared uneffective to stimulate glycogen synthesis whereas fructose and propionate activated glycogen synthase owing to (i) a decrease in phosphorylase a activity and (ii) changes in the intracellular concentrations of glucose 6-phosphate and adenine nucleotides. 3. The activation of hepatic glycogenolysis by glucagon and alpha 1-adrenergic agents was associated with increased phosphorylase a and decreased glycogen synthase activities. 4. The simultaneous changes in these two enzyme activities suggest that in sheep liver, activation of phosphorylase a is not a prerequisite step for synthase inactivation. 5. In sheep hepatocytes, in the presence of propionate and after a lag period, insulin activated glycogen synthase without affecting phosphorylase a. 6. This latter result suggests that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase. Insulin also antagonized glucagon effect on glycogen synthesis by counteracting the rise of cAMP.  相似文献   

8.
The effects of insulin, epinephrine, glucose and anti-insulin receptor antibodies on enzymes involved in the regulation of glycogen synthesis were investigated in the isolated mouse soleus muscle. Insulin maximally increased the percentage of glycogen synthase active form after 15 min in the absence of glucose in the extracellular medium; half-maximal and maximal effects were obtained with 1.5 and 33 mM insulin, respectively. The basal percentage of glycogen phosphorylase active form was not altered by insulin. Antibodies to the insulin receptor had similar effects to those of insulin on both enzymes. The percentage of glycogen synthase active form was maximally decreased and that of phosphorylase maximally increased after a 2 min exposure to epinephrine in the absence of extracellular glucose. Glucose alone had no effect on muscle glycogen synthase. When muscles were incubated with insulin (33 nM) plus glucose (20 mM) for 5-10 min, the increase in the percentage of glycogen synthase active form was greater than with insulin alone. This enhancing effect of glucose on insulin activation of glycogen synthase disappeared after 20 min. The results suggest the existence of two mechanisms whereby insulin activates muscle glycogen synthase. The main effect is operative in the absence of extracellular glucose and occurs at insulin concentrations close to the physiological range. The other effect requires glucose and may result from the stimulation by insulin of glucose transport and/or metabolism.  相似文献   

9.
The effects in kidney of streptozotocin-induced diabetes and of insulin supplementation to diabetic animals on glycogen-metabolizing enzymes were determined. Kidney glycogen levels were approximately 30-fold higher in diabetic animals than in control or insulintreated diabetic animals. The activities of glycogenolytic enzymes i.e., phosphorylase (both a and b), phosphorylase kinase, and protein kinase were not significantly altered in the diabetic animals. Glycogen synthase (I form) activity decreased in the diabetic animals whereas total glycogen synthase (I + D) activity significantly increased in these animals. The activities were restored to control values after insulin therapy. Diabetic animals also showed a 3-fold increase in glucose 6-phosphate levels. These data suggest that higher accumulation of glycogen in kidneys of diabetic animals is due to increased amounts of total glycogen synthase and its activator glucose 6-phosphate.  相似文献   

10.
We have investigated the effects of insulin on the phosphorylation of glycogen phosphorylase in skeletal muscle. Rat epitrochlearis muscles were incubated in vitro with 32Pi to label cellular phosphoproteins, before being treated with hormones. Phosphorylase, phosphorylase kinase, and glycogen synthase were immunoprecipitated under conditions that prevented changes in their phosphorylation states. Based on measurements of the activity ratio (-AMP/+AMP) and the 32P content of phosphorylase, 4-8% of the phosphorylase in untreated muscles appeared to be phosphorylated. Epinephrine promoted increases of approximately 4-fold in the 32P content and activity ratio. Neither these effects nor the epinephrine-stimulated increases in phosphorylation of glycogen synthase and phosphorylase kinase were attenuated by insulin. However, insulin at physiological concentrations rapidly decreased the 32P content of phosphorylase in muscles incubated without epinephrine. Results from peptide mapping experiments indicate that phosphorylase was phosphorylated at a single site in both control and insulin on phosphorylase represented a decrease in 32P of approximately 50%. By comparison, the 32P content of glycogen synthase and the beta subunit of phosphorylase kinase were decreased by only 20 and 16%, respectively; the 32P content of the kinase alpha subunit was not affected by insulin. The results provide direct evidence that insulin decreases the amount of phosphate in phosphorylase and phosphorylase kinase. These findings have important implications with respect to both the regulation of glycogen metabolism in skeletal muscle and the mechanism of insulin action.  相似文献   

11.
Incubation of fat cells with insulin increased glycogen synthase I activity without changing total synthase activity. This effect of insulin was dependent upon the particular lot of albumin present in the medium and was abolished by incubating cells with trypsin. Half-maximal activation of glycogen synthase was obtained with 8 microunits/ml of insulin, a concentration very similar to that which half-maximally stimulated 3-O-methylglucose uptake. The basal percentage of phosphorylase a activity was not detectably altered by insulin, although it was decreased by incubating cells with 5 mM glucose. Insulin (50 microunits/ml) markedly opposed actions of epinephrine (0.05 to 10 muM) to increase phosphorylase a activity and decrease glycogen synthase I activity, effects which were observed without glucose. Partial activation of glycogen synthase by insulin was seen after 1 min and complete activation after 4 min. Glucose alone produced a transient increase in synthase I activity. When cells were incubated with insulin plus glucose for 4 min, the increase in the percent synthase I activity was much greater than the additive effects of insulin and glucose alone. This potentiation of the effect of insulin on glucogen synthase I activity depended on the time of incubation with glucose and on the concentration of the hexose. If cells were incubated with cytochalasin B before insulin plus glucose, the effect of glucose was abolished. These results suggest that there are at least two mechanisms by which insulin can increase fat cell glycogen synthase I activity. One requires glucose and activation occurs secondary to an increase in glucose transport; where another mechanism(s) is operative even in the absence of glucose.  相似文献   

12.
The activities of glycogen synthase (I and total) and phosphorylase (a and total) in crude extracts of isolated extensor digitorum longus and soleus muscles of the rat incubated in vitro in the absence or presence of methadone were very low. Addition of glycogen during homogenization increased the activities of both enzymes in control muscles. Even at optimal concentrations of glycogen, however, the activities of both enzymes from methadone-treated muscles were significantly lower than their activities in control muscles. The activity of phosphoglucomutase was not altered by incubation with methadone or by homogenization with glycogen. It is suggested that the addition of optimal amounts of glycogen during extraction of the enzymes enhances the extractability of glycogen synthase and increases the activity of phosphorylase by some other mechanism and that these processes are interfered with when the muscles are pretreated with methadone.  相似文献   

13.
Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3beta (GSK3beta) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced.  相似文献   

14.
Incubation of rat hepatocytes with angiotensin II (1 nM) produced a time-dependent accumulation of 1, 2-diacylglycerol and inactivation of glycogen synthase with maximum effects at 10 min. The level of diacylglycerol then gradually declined and the activity of glycogen synthase I returned to control values at 30 min. In contrast, angiotensin II caused an increase in cytosolic Ca2+ and an activation of glycogen phosphorylase which were rapid and transient, reaching maximum values in less than 2 min and then returning to control levels at 15 min. There were excellent correlations between the changes in glycogen synthase I and diacylglycerol levels and between the changes in phosphorylase alpha and cytosolic Ca2+ in these time-course studies. However, there was no correlation between the changes in diacylglycerol and phosphorylase alpha or between the changes in cytosolic Ca2+ and glycogen synthase I. Norepinephrine also caused a slow increase in diacylglycerol and inactivation of glycogen synthase, and a rapid increase in cytosolic free Ca2+ and activation of glycogen phosphorylase. Addition of an alpha1-adrenergic blocker (prazosin or phentolamine) caused rapid decreases in cytosolic free Ca2+ and phosphorylase alpha, but only slowly reversed the inactivation of synthase and accumulation of diacylglycerol. The dose-response curves for norepinephrine and prazosin on glycogen synthase were well correlated with those on diacylglycerol. It is proposed that in liver cells, Ca2+-mobilizing hormones regulate phosphorylase a through a Ca2+-dependent mechanism and inactivate glycogen synthase through the generation of diacylglycerol, at least in part. The data provide additional support for the view that protein kinase C may be important in the regulation of glycogen synthase in liver.  相似文献   

15.
A A Young  D M Mott  K Stone  G J Cooper 《FEBS letters》1991,281(1-2):149-151
The pancreatic beta-cell hormone amylin acts in isolated rat skeletal muscle to decrease insulin-stimulated incorporation of glucose into glycogen. It also increases blood levels of lactate and glucose in fasted rats in vivo. However, it remained uncertain whether amylin exerts direct effects to stimulate muscle glycogenolysis. We now report that amylin caused a dose-dependent increase in activity of muscle glycogen phosphorylase in isolated rat soleus muscle by stimulating phosphorylase a. Insulin inhibited amylin-stimulated activation of phosphorylase. Effects of amylin to stimulate muscle glycogenolysis are consistent with observed effects of amylin in vivo and could be a major mechanism whereby amylin modulates carbohydrate metabolism.  相似文献   

16.
Addition of insulin to liver cells from fed rats incubated in the absence of other hormones resulted in a 2-fold increase in glycogen synthase activity. This direct effect of insulin has been characterized and compared with the antagonism by insulin of alpha 1-adrenergic effects on glycogen metabolism. The activation of glycogen synthase by insulin developed slowly (20-25 min) and was most effective when the enzyme was partially preactivated by glucose. With glucose concentrations above 15 mM the effects of insulin and glucose were additive. In contrast to glucose, which caused inverse changes in phosphorylase and glycogen synthase activity, insulin activated glycogen synthase without affecting phosphorylase a. Treatment of hepatocytes with phenylephrine led to an activation of phosphorylase and inactivation of glycogen synthase, which could be partially blocked by insulin. This antagonistic effect of insulin was rapid (complete within 5 min of insulin addition) and showed an identical time course for both enzymes. The activation of glycogen synthase by insulin and inactivation by phenylephrine both resulted principally from alterations in the Vmax. Insulin added alone did not alter the basal cytosolic free Ca2+ concentration, which was 160 nM as measured with Quin 2 as an intracellular Ca2+ indicator. Both the magnitude and the initial rate of cytosolic free Ca2+ increase induced by phenylephrine were reduced by about 50% in cells pretreated with insulin. It is concluded that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase, whereas insulin antagonizes the effects of alpha 1-agonists by interfering with their ability to elevate cytosolic free Ca2+.  相似文献   

17.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

18.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

19.
Insulin regulation of hepatic glycogen synthase and phosphorylase.   总被引:7,自引:0,他引:7  
L A Witters  J Avruch 《Biochemistry》1978,17(3):406-410
The relative roles of insulin and glucose in the regulation of hepatic glycogen synthase and phosphorylase were studied in hepatocytes from fed rats. Elevation of extra-cellular glucose led to a rapid decrease in phosphorylase a activity followed by a slower increase in glycogen synthase I activity. A reciprocal and coordinate relationship between phosphorylase inactivation and synthase activation in response to glucose was observed; following initial glucose-induced inactivation of phosphorylase, there was a highly significant linear inverse relationship between residual phosphorylase activity and glycogen synthase activation. Insulin led to a further decrease in phosphorylase activity and a 30-50% additional increase in glycogen synthase activity over that caused by glucose. The effects of insulin required the presence of glucose and served to augment acute glucose stimulation of glycogen synthase and inhibition of phosphorylase. Insulin did not perturb the reciprocal and coordinate relationship between phosphorylase inactivation and synthase activation in response to glucose. The results suggest that the ability of insulin to activate hepatic glycogen synthase can be entirely accounted for by its ability to inactivate phosphorylase.  相似文献   

20.
Addition of 10 micron of the alpha-adrenergic agonist phenylephrine to polymorphonuclear leukocytes suspended in glucose-free Krebs-Ringer bicarbonate buffer (pH 6.7) activated phosphorylase, inactivated glycogen synthase R maximally within 30 s, and resulted in glycogen breakdown. Phenylephrine increased 45Ca efflux relative to control of 45Ca prelabelled cells, but did not affect cyclic adenosine 3',5'-monophosphate (cAMP) concentration. The effects of phenylephrine were blocked by 20 micron phentolamine and were absent in cells incubated at pH 7.4. The same unexplained dependency of extracellular pH was observed with 2.5 nM--2.5 micron glucagon, which activated phosphorylase and inactivated synthase-R, but in addition caused a 30-s burst in cAMP formation. 25 nM glucagon also increased 45Ca efflux. The activation of phosphorylase by phenylephrine and possibly also by glucagon are thought mediated by an increased concentration of cytosolic Ca2+ activating phosphorylase kinase. The effects of 5 micron isoproterenol or 5 micron epinephrine were independent of extracellular pH 6.7 and 7.4 and resulted in a sustained increase in cAMP, an activation of phosphorylase and inactivation of synthase-R within 15 s, and in glycogenolysis. The effects of both compounds were blocked by 10 micron propranolol, whereas 10 micron phentolamine had no effect on the epinephrine action. The efflux of 45Ca was not affected by either isoproterenol or epinephrine. The beta-adrenergic activation of phosphorylase is consistent with the assumption of a covalent modification of phosphorylase kinase by the cAMP dependent protein kinase. Phosphorylation of synthase-R to synthase-D can thus occur independently of increase in cAMP, but the evidence is inconclusive with respect to the cAMP dependent protein kinase also being active in this phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号