首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Targeted DNA editing has great potential to cure some genetic diseases; however, the use of artificial nucleases such as CRISPR-Cas9 and TALEN in gene therapy can potentially cause severe side effects due to off-target DNA cleavages. Single-stranded (ss) DNAs and 5'-tailed duplexes (TDs) can achieve target base substitutions when introduced without artificial nucleases into cultured cells and mouse liver. In this study, ss DNA and TD were separately co-introduced into human U2OS cells, together with a target plasmid DNA bearing an inactivated lacZα gene, and the gene correction efficiencies were compared. Unlike the genes examined in previous studies, ss DNA and TD showed similar efficiencies. Therefore, ss DNAs might be as useful as TD for gene correction, depending on the target sequence.  相似文献   

2.
The cleavage of the DNAs of the B95-8 and P3HR-1 virus strains of Epstein-Barr virus by the restriction endonucleases EcoRI, HindIII and BamI was investigated using a new technique for quantitative evaluation of the fluorescence of ethidium stained DNA fragments separated on agarose gels. The results obtained with B95-8 DNA showed that in addition to the limited repetitions of nucleotide sequences observed in the EcoRI and HindIII cleavage patterns, the molecule contained a BamI fragment with a molecular mass of 2.0 megadaltons which was present in a total of about 11 copies and localized to a limited part of the DNA molecule. The same sequences were also present in the P3HR-1 DNA albeit in a lower molar ratio. P3HR-1 DNA yielded restriction enzyme cleavage patterns suggesting DNA sequence heterogeneity of P3HR-1 virus. No fragment was present in more than about 4 copies per molecule of P3HR-1 DNA. Comparison of the restriction enzyme cleavage patterns of P3HR-1 and B95-8 DNA revealed a high degree of structural homology emphasized by nucleic acid hybridization experiments with EBV complementary RNA synthesized in vitro.  相似文献   

3.
The correction of an inactivated hygromycin resistance and enhanced green fluorescent protein (Hyg-EGFP) fusion gene by a several hundred-base single-stranded (ss) DNA fragment has been reported. In this study, the effectiveness of this type of gene correction was examined for various positions in the rpsL gene. Sense and anti-sense ssDNA fragments were prepared, and the gene correction efficiencies were determined by co-introduction of the target plasmid containing the gene with the ssDNA fragments. The gene correction efficiency varied (0.8-9.3%), depending on target positions and sense/anti-sense strands. Sense ssDNA fragments corrected the target gene with equal or higher efficiencies as compared to their anti-sense counterparts. The target positions corrected with high efficiency by the sense fragments also tended to be corrected efficiently by the anti-sense fragments. These results suggest that the sense ssDNA fragments are useful for the correction of mutated genes. The variation in the correction efficiency may depend on the sequence of the target position in double-stranded DNA.  相似文献   

4.
Natural genetic transformation in the bacterium Bacillus subtilis provides a model system to explore the evolutionary function of sexual recombination. In the present work, we study the response of transformation to UV irradiation using donor DNAs that differ in sequence homology to the recipient's chromosome and in the mechanism of transformation. The four donor DNAs used include homologous-chromosomal-DNA, two plasmids containing a fragment of B. subtilis trp+ operon DNA and a plasmid with no sequence homology to the recipient cell's DNA. Transformation frequencies for these DNA molecules increase with increasing levels of DNA damage (UV radiation) to recipient cells, only if their transformation requires homologous recombination (i.e. is recA+-dependent). Transformation with non-homologous DNA is independent of the recipient's recombination system and transformation frequencies for it do not respond to increases in UV radiation. The transformation frequency for a selectable marker increases in response to DNA damage more dramatically when the locus is present on small, plasmid-borne, homologous fragments than if it is carried on high molecular weight chromosomal fragments. We also study the kinetics of transformation for the different donor DNAs. Different kinetics are observed for homologous transformation depending on whether the homologous locus is carried on a plasmid or on chromosomal fragments. Chromosomal DNA- and non-homologous-plasmid-DNA-mediated transformation is complete (maximal) within several minutes, while transformation with a plasmid containing homologous DNA is still occurring after an hour. The results indicate that DNA damage directly increases rates of homologous recombination and transformation in B. subtilis. The relevance of these results and recent results of other labs to the evolution of transformation are discussed.  相似文献   

5.
DNA methyltransferase activities have been partially purified from unfertilized eggs and blastula nuclei of sea urchin embryos. Comparative studies, using different DNAs as substrates, show that the two preparations are most active on hemimethylated and single-strand DNA, but they methylate, though at a lower rate, also on double-strand DNA. The two activities show distinctive efficiencies in methylating plasmid DNAs and marked differences in the rate of methyl transfer to DNAs in different structural states: linear, relaxed, or supercoiled. The ratio of the apparent specific activity of the two preparations depends on the particular DNA used as substrate and its structure. Methylation analysis of the restriction fragments of methylated plasmid DNAs shows a linear correlation between introduced methyl groups and the percent of CpG of each particular fragment, indicating that methylation is substantially random and sequence is less relevant than conformation in determining enzyme efficiency. The data do not permit us to decide if the two activities are different enzymes or the same enzyme with different modulating factors.  相似文献   

6.
The available reagents for the attachment of functional moieties to plasmid DNA are limiting. Most reagents bind plasmid DNA in a non-sequence- specific manner, with undefined stoichiometry, and affect DNA charge and delivery properties or involve chemical modifications that abolish gene expression. The design and ability of oligonucleotides (ODNs) containing locked nucleic acids (LNAs) to bind supercoiled, double-stranded plasmid DNA in a sequence-specific manner are described for the first time. The main mechanism for LNA ODNs binding plasmid DNA is demonstrated to be by strand displacement. LNA ODNs are more stably bound to plasmid DNA than similar peptide nucleic acid (PNA) ‘clamps’ for procedures such as particle-mediated DNA delivery (gene gun). It is shown that LNA ODNs remain associated with plasmid DNA after cationic lipid-mediated transfection into mammalian cells. LNA ODNs can bind to DNA in a sequence-specific manner so that binding does not interfere with plasmid conformation or gene expression. Attachment of CpG-based immune adjuvants to plasmid by ‘hybrid’ phosphorothioate–LNA ODNs induces tumour necrosis factor-α production in the macrophage cell line RAW264.7. This observation exemplifies an important new, controllable methodology for adding functionality to plasmids for gene delivery and DNA vaccination.  相似文献   

7.
Site-specific gene modifications in cells are initiated by the introduction of exogenous DNA. We used a recently established cell assay to compare the ability of DNA donors to induce a single point mutation that converts a target gene encoding blue fluorescent protein (BFP) into expressing green fluorescent protein (GFP). In a chromosomal assay with cells stably expressing BFP, we showed that fluorescently labeled single-stranded oligonucleotides and a donor plasmid cotranscribing a red fluorescent protein provide similar efficiencies in triggering BFP–GFP conversions. In transient cotransfections, an isogenic donor plasmid comprising a nonfunctional GFP gene yielded a greater efficiency for the conversion of the BFP target gene than a nonisogenic donor, and all plasmid donors were superior to oligonucleotides.  相似文献   

8.
A 5′-tailed duplex (TD) DNA corrects a base-substitution mutation. In this study, the effects of insertion and deletion (indel) mismatches distant from the target position on the gene correction were examined. Three target plasmid DNAs with and without indel mismatches ~330 bases distant from the correction target position were prepared, and introduced into HeLa cells together with the TD. The indel mismatches improved the gene correction efficiency and specificity without sequence conversions at the indel mismatch site. These results suggested that the gene correction efficiency and specificity are increased when an appropriate second mismatch is introduced into the TD fragment.  相似文献   

9.
A 606-base single-stranded (ss) DNA fragment, prepared by restriction enzyme digestion of ss phagemid DNA, corrects a hygromycin resistance and enhanced green fluorescent protein (Hyg-EGFP) fusion gene more efficiently than a PCR fragment, which is the conventional type of DNA fragment used in gene correction. Here, a tailed duplex, obtained by annealing an oligonucleotide to the ss DNA fragment, was used in the correction. The tailed duplex may be a good substrate for the RAD51 protein, an important enzyme in homologous recombination, which could be the gene correction pathway. The annealing of the oligonucleotides enhanced the correction efficiency of the Hyg-EGFP gene, especially when annealed in the 3'-region of the ss DNA fragment. Both the length and backbone structure of the oligonucleotides affected the gene correction efficiency. This type of gene correction device was also effective for another target gene, the rpsL gene. The results obtained in this study indicate that tailed duplex DNA fragments are effective nucleic acids for gene correction.  相似文献   

10.
We have constructed a plasmid which contains 22 copies of a 147 bp DNA fragment which contains the major DNA gyrase cleavage site from plasmid pBR322 (located at base-pair 990). We have found that this fragment is efficiently bound and cleaved by gyrase. The selectivity for the sequence corresponding to position 990 in pBR322 is maintained even when this site is located only 15 bp from one end of the 147 bp fragment. A strategy for the specific incorporation of a single thiophosphoryl linkage into the 147 bp fragment has been developed, and gyrase has been shown to catalyse efficient cleavage of fragments bearing phosphorothioate linkages at the gyrase cleavage site in one or both strands.  相似文献   

11.
Soymilk, tofu, corn masa, and cooked potato were produced from transgenic raw materials and the effect of processing on the degradation of DNA was studied. Major degrading factors were for soymilk and tofu the mechanical treatment of soaked soybeans and for corn masa and cooked potatoes the thermal treatment. In the processed foods no DNA fragments > 1.1 kb were detected. We included in our studies the effect of the size of donor DNA and length of the homologous sequence on the marker rescue transformation of B. subtilis LTH 5466, which was monitored by restoration of deleted nptII. When DNA fragments (168, 414, 658, and 792 bp) of nptII and linearized plasmid DNA (pGEM-T-1, 3168 bp and pGEM-T-2, 3792 bp) containing the 168 bp or 792 bp fragments, respectively, were used as donor DNA, it was observed that the efficiency of marker rescue decreased with decreasing length of homologous sequence. The use of a larger plasmid (pMR2, 5786 bp) containing the 792 bp fragment revealed higher efficiency of marker rescue compared to pGEM-T-2. The nptII fragments resulted in lower efficiencies compared to plasmid DNA containing the same fragment. For the 792 bp fragment and the linearized plasmid pMR2 a first-order dependency of the frequency of marker rescue transformation on the DNA concentration was observed. Based on the acquired data, the hypothetical frequency of transformation of transgenic DNA to B. subtilis in cooked potatoes was calculated to be equal to 8.5 x 10(-19) and 1.2 x 10(-27) for homologous and illegitimate recombination, respectively. These data permit to roughly estimate the time after which a person (10(8) years) or the world population (15 days) is exposed to one transformant generated by homologous recombination event, when the daily consumption per person is 130 g of cooked potatoes.  相似文献   

12.
The possibility to accomplish the sequence-specific chemical modification of superhelical DNA with reactive oligonucleotide derivatives was demonstrated. Plasmids containing fragments of the immunoglobulin gene were modified with alkylating derivatives of oligonucleotides complementary to a nucleotide sequence in the immunoglobulin gene. In contrast to the relaxed plasmid DNAs, superhelical DNAs (sigma = -0.1) were found to be attacked by the derivatives at the target nucleotide sequence. The efficiency of the reaction increases with the increase of the plasmids negative superhelicity. It was found also that the denatured derivatives. The sequence-specific modification of plasmid DNAs with the reactive oligonucleotide derivatives can be used for the site-directed mutagenesis and the investigation of the repair processes.  相似文献   

13.
A chemical-enzymatic synthesis of 271- and 286-bp DNA duplexes, each of which contains the entire sequence coding for human proinsulin has been accomplished. In addition to the coding sequence, the 271-bp fragment carries translation initiation and termination signals plus EcoRI-HindIII restriction enzyme sites for insertion into an appropriate plasmid vector. The 286-bp fragment also contains a Shine-Dalgarno (SD) sequence preceding an ATG codon. Employing the 286-bp polynucleotide, the 568-bp tandem proinsulin gene has been obtained. The synthesis of these DNA fragments involved preparation of 42 oligonucleotides by a rapid N-methylimidazolide phosphotriester method and enzymatic conversion of the oligonucleotides into the gene subfragments, which were cloned separately and fused to yield the desired DNAs coding for proinsulin. The proinsulin gene fragments were cloned in Escherichia coli and shown to have the correct sequences.  相似文献   

14.
Unexpected loss of genomic DNA from agarose gel plugs   总被引:3,自引:0,他引:3  
R B Fritz  P R Musich 《BioTechniques》1990,9(5):542, 544, 546-542, 544, 550
Intact chromosomal DNAs are routinely prepared by embedding cells in agarose plugs before lysis. The large sizes of the genomic DNAs cause their retention while other macromolecules diffuse into and out of the gel matrix during lysis, washing and restriction cleavage incubations. However, in an analysis of agarose-embedded chromosomal DNAs cleaved with restriction enzymes, fragments larger than 30 kilobases were found to have eluted from the gel plugs. Since loss of fragments from gel plugs may affect qualitative and quantitative interpretations of electrophoretic patterns, an analysis of the diffusion of DNA segments from agarose plugs was performed. The two variables monitored were the time dependence and the DNA fragment size dependence of the diffusion process. The results indicate that small fragments (less than or equal to 2 kilobases) are quickly lost from 1% agarose gel plugs; moreover, significant amounts of large DNA segments (i.e., the 48.5-kilobase lambda phage chromosome) are also lost. In addition to urging caution in the analysis of restriction cleavage data, these observations suggest that intact small organelle genomes and extrachromosomal DNAs also may be lost from genomic DNAs prepared in agarose gel plugs.  相似文献   

15.
A V Bellini  F de Ferra  G Grandi 《Gene》1988,69(2):325-330
This paper describes a new method for site-directed mutagenesis which allows mutations by deletion, insertion or substitution of large fragments of DNA with more than 50% efficiency and does not require subcloning in a single-stranded (ss) DNA vehicle. The site of mutagenesis is removed from a linearized plasmid DNA by BAL 31 digestion, ss DNA regions are generated by limited exonuclease treatment and the mutated target site is reconstituted by annealing of the plasmid DNA to a 35-70 nucleotide long mutated ss oligodeoxynucleotide containing the desired mutation. The circularized plasmid is finally used to transform directly Escherichia coli competent cells.  相似文献   

16.
Clone banks of the mung bean, pea and spinach chloroplast genomes   总被引:7,自引:0,他引:7  
J D Palmer  W F Thompson 《Gene》1981,15(1):21-26
All but one of the PstI restriction fragments from mung bean, pea, and spinach chloroplast DNAs have been stably cloned into pBR322. Large fragments (15-54 kb) were cloned at low efficiencies which decreased with increasing fragment length. However, plasmids containing fragments above 25-30 kb were too unstable to be useful. In particular, pBR322 derivatives containing the largest mung bean and spinach fragments (34 kb and 54 kb, respectively) are extremely unstable and rapidly delete parts of the plasmid sequence. The PstI fragments of mung bean chloroplast DNA which cover the 34-kb PstI fragment have been cloned into pACYC177. After a search of several thousand recombinants we were unable to recover a clone containing a 12.2-kb pea chloroplast PstI fragment and suggest that some property of its sequence may be inimical to the cloning process. The identity of the cloned fragments to native chloroplast DNA restriction fragments is demonstrated by restriction analysis and the ability to construct detailed restriction maps of the mung bean and pea chloroplast genomes.  相似文献   

17.
The thymidine kinase (TK) gene of HSV-1 has been cloned in Escherichia coli K12 plasmids, pMH1, pMH1A, and pMH4. These plasmids contain a 1,92Obp HSV-1 TK DNA sequence, which replaces a 2,067 bp EcoR I to Pvu II sequence of plasmid pBR322 DNA. Superhelical DNAs of plasmids pMH1, pMH1A, and pMH4 as well as plasmid DNAs cleaved by EcoR I, Hinc II, Bg1 II, Sma I, and Pvu II transformed TK-deficient LM(TK-) cells to the TK+ phenotype. A 1,230bp EcoR I-Sma I fragment purified from pMH1 DNA (and from plasmid pAGO, DNA, the parent of pMH1) also transformed LM(TK-) cells. Serological and disc PAGE studies demonstrated that the TK activity expressed in biochemically transformed cells were HSV-1-specific. The experiments suggest that the HSV-1 TK coding region may be contained within a l.1kbp DNA sequence extending from about the Hinc II (or Bgl II) cleavage site to the Sma I site. 35S-methionine labeling experiments carried out on cell lines transformed by Hinc II-cleaved pMH1 DNA and by the EcoR I-Sma I fragment showed that the TKs purified from the transformed cells consisted of about 39-40,000 dalton polypeptides.  相似文献   

18.
The DNAs of the human papillomaviruses (HPVs) associated with the benign lesions of two patients suffering from epidermodysplasia verruciformis (patients JD and JK) were analyzed by using 12 restriction endonucleases. None of the restriction endonucleases were one-cut enzymes for the HPV DNA obtained from patient JD, referred to as the prototypical HPV-5, whereas five of them were one-cut enzymes for the DNA of the major virus found in patient JK, referred to as HPV-9. The molecular cloning of the two fragments resulting from the cleavage of HPV-5 DNA by endonuclease HindIII and of the single fragment obtained after treatment of HPV-9 DNA with endonuclease BamHI was performed in Escherichia coli after the fragments were inserted in plasmid pBR322. A cleavage map of the two cloned genomes was constructed. Little sequence homology (4 to 5%) was detected between HPV-5 and HPV-9 DNAs by DNA-DNA hybridization experiments in liquid phase at saturation; this homology was reproducibly higher than that (2 to 3%) detected under the same conditions between these DNAs and HPV-1a DNA. In addition, blot hybridization experiments performed under stringent conditions showed no or little sequence homology between the DNAs of HPV-5 and HPV-9 and those of HPV prototypes of types 1, 2, 3, 4, and 7 associated with skin warts. These results confirm that HPV-5 and HPV-9 are two distinct HPV types.  相似文献   

19.
The seven previously identified EcoRI cleavage fragments of phi 105 DNA were ordered with respect to their sites of origin on the phage genome by marker rescue. One fragment, H, did not carry any determinants essential for replication. This fragment was totally missing in a deletion mutant which exhibited a lysogenization-defective phenotype. There is a nonessential region on the phi 105 genome which begins in fragment B, spans fragment H, and ends in fragment F. The size of the nonessential region, as estimated by alterations observed in the fragmentation patterns of deletion mutant DNAs, is approximately 2.7 X 10(6) daltons. Two new EcoRI cleavage fragments with molecular weights of approximately 0.2 X 10(6) were detected by autoradiography of 32P-labeled DNA. These small fragments were not located on the cleavage map.  相似文献   

20.
Loop-mediated isothermal amplification (LAMP), in which a specific DNA sequence can be directly amplified under isothermal conditions, yields DNA in large quantities of more than 500 microg/ml. We have developed a method to isolate single-stranded DNA fragments from LAMP products that are stem-loop DNAs with several inverted repeats of the target DNA. This method requires the TspRI restriction enzyme, a primer hybridized to the 3' overhanging sequence at its cleavage site, and a DNA polymerase with strand displacement activity. The LAMP products are digested with TspRI and are then extended using the primer, producing the strand-specific DNA fragments. All processes, from LAMP reaction to primer extension, can be carried out at the same temperature. The use of strand-specific DNA would be conducive for detection by hybridization technique such as DNA microarrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号