首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoremediation — the use of plants to clean up polluted soil and water resources — has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives, PCBs etc. Another approach to enhancing phytoremediation ability is the construction of plants that secrete chemical degrading enzymes into the rhizosphere. Recent studies revealed that accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as major limitation in improving phytoremediation efficiency. However, this can be overcome by the selective expression of bacterial ACC deaminase (which regulates ethylene levels in plants) in plants together with multiple genes for the different phases of xenobiotic degradation. This review examines the recent developments in use of transgenic-plants for the enhanced metabolism, degradation and phytoremediation of organic xenobiotics and its future directions.  相似文献   

2.
Phytoremediation: an overview of metallic ion decontamination from soil   总被引:23,自引:0,他引:23  
In recent years, phytoremediation has emerged as a promising ecoremediation technology, particularly for soil and water cleanup of large volumes of contaminated sites. The exploitation of plants to remediate soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Many modern tools and analytical devices have provided insight into the selection and optimization of the remediation process by plant species. This review describes certain factors for the phytoremediation of metal ion decontamination and various aspects of plant metabolism during metallic decontamination. Metal-hyperaccumulating plants, desirable for heavily polluted environments, can be developed by the introduction of novel traits into high biomass plants in a transgenic approach, which is a promising strategy for the development of effective phytoremediation technology. The genetic manipulation of a phytoremediator plant needs a number of optimization processes, including mobilization of trace elements/metal ions, their uptake into the root, stem and other viable parts of the plant and their detoxification and allocation within the plant. This upcoming science is expanding as technology continues to offer new, low-cost remediation options.  相似文献   

3.
The use of plants to clean-up soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Field trials suggested that the rate of contaminant removal using conventional plants and growth conditions is insufficient. The introduction of novel traits into high biomass plants in a transgenic approach is a promising strategy for the development of effective phytoremediation technologies. This has been exemplified by generating plants able to convert organic and ionic forms of mercury into the less toxic, volatile, elemental mercury, a trait that occurs naturally only in some bacteria and not at all in plants. The engineering of a phytoremediator plant requires the optimization of a number of processes, including trace element mobilization in the soil, uptake into the root, detoxification and allocation within the plant. A number of transgenic plants have been generated in an attempt to modify the tolerance, uptake or homeostasis of trace elements. The phenotypes of these plants provide important insights for the improvement of engineering strategies. A better understanding, both of micronutrient acquisition and homeostasis, and of the genetic, biochemical and physiological basis of metal hyperaccumulation in plants, will be of key importance for the success of phytoremediation.  相似文献   

4.
Referee: Dr. C. Neal Stewart, Jr., Department of Plant Science and Landscape Systems, The University of Tennessee, 2431 Center Drive, Knoxville, TN 37996-4561 There is major international concern over the widescale contamination of soil and associated groundwater by persistant explosives residues. The development of methods to remediate these contaminants has been a significant research interest for several decades. In the last 10 years, phytoremediation has emerged as a focus for explosives remediation because of its low cost, low energy requirements, and promising research observing explosives removal from contaminated groundwater and soil. More recent work has focused on the modes of transformation and metabolism of energetic compounds by plants. These biochemical studies and the experimental conditions enabling the degradation and uptake of explosives by different plant species are discussed.  相似文献   

5.
Phytoremediation is a nondestructive, cost-effective in-situ technology to clean up contaminated soils. In the case of contamination with petroleum hydrocarbons, plants enhance microbial degradation of the contaminant in the rhizosphere. The potential of this technology for the tropics should be high due to prevailing climatic conditions favoring plant growth and stimulating microbial activity. Investigations of the potential of tropical plants for phytoremediation, however, are scarce. The present work studied two grasses and six legumes from the eastern savannah of Venezuela on their reaction to crude oil contamination in soil. Results shall help to identify plants with a potential for phytoremediation and subsequent studies. Seedling emergence and biomass production were determined for plants growing in soil contaminated with 0%, 3%, and 5% heavy crude oil. Contamination had, in general, a tendential but not significant negative influence on seedling emergence. Dry matter production was reduced by only a few percent to up to 85%. Furthermore, in some legumes inhibition of nodulation was observed. The grass Brachiaria brizantha and the legumes Centrosema brasilianum and Calopogonium mucunoides are promising for phytoremediation because in contaminated soil they combined high seedling emergence with least affected biomass production. Since they are cultivated forage/soil cover species also in other regions of the tropics, their potential for phytoremediation of petroleum contaminated soils extends beyond Venezuela.  相似文献   

6.
An ideal plant for environmental cleanup can be envisioned as one with high biomass production, combined with superior capacity for pollutant tolerance, accumulation, and/or degradation, depending on the type of pollutant and the phytoremediation technology of choice. With the use of genetic engineering, it is feasible to manipulate a plant's capacity to tolerate, accumulate, and/or metabolize pollutants, and thus to create the ideal plant for environmental cleanup. In this review, we focus on the design and creation of transgenic plants for phytoremediation of metals. Plant properties important for metal phytoremediation are metal tolerance and accumulation, which are determined by metal uptake, root-shoot translocation, intracellular sequestration, chemical modification, and general stress resistance. If we know which molecular mechanisms are involved in these tolerance and accumulation processes, and which genes control these mechanisms, we can manipulate them to our advantage. This review aims to give a succinct overview of plant metal tolerance and accumulation mechanisms, and to identify possible strategies for genetic engineering of plants for metal phytoremediation. An overview is presented of what has been achieved so far regarding the manipulation of plant metal metabolism. In fact, both enhanced metal tolerance and accumulation have been achieved by overproducing metal chelating molecules (citrate, phytochelatins, metallothioneins, phytosiderophores, ferritin) or by the overexpression of metal transporter proteins. Mercury volatilization and tolerance was achieved by introduction of a bacterial pathway. The typical increase in metal accumulation as the result of these genetic engineering approaches is 2-to 3-fold more metal per plant, which could potentially enhance phytoremediation efficiency by the same factor. As for the applicability of these transgenics for environmental cleanup, results from lab and greenhouse studies look promising for several of these transgenics, but field studies will be the ultimate test to establish their phytoremediation potential, their competitiveness, and risks associated with their use.  相似文献   

7.
Phytoremediation is a nondestructive, cost-effective in-situ technology to clean up contaminated soils. In the case of contamination with petroleum hydrocarbons, plants enhance microbial degradation of the contaminant in the rhizosphere. The potential of this technology for the tropics should be high due to prevailing climatic conditions favoring plant growth and stimulating microbial activity. Investigations of the potential of tropical plants for phytoremediation, however, are scarce. The present work studied two grasses and six legumes from the eastern savannah of Venezuela on their reaction to crude oil contamination in soil. Results shall help to identify plants with a potential for phytoremediation and subsequent studies. Seedling emergence and biomass production were determined for plants growing in soil contaminated with 0%, 3%, and 5% heavy crude oil. Contamination had, in general, a tendential but not significant negative influence on seedling emergence. Dry matter production was reduced by only a few percent to up to 85%. Furthermore, in some legumes inhibition of nodulation was observed. The grass Brachiaria brizantha and the legumes Centrosema brasilianum and Calopogonium mucunoides are promising for phytoremediation because in contaminated soil they combined high seedling emergence with least affected biomass production. Since they are cultivated forage/soil cover species also in other regions of the tropics, their potential for phytoremediation of petroleum contaminated soils extends beyond Venezuela.  相似文献   

8.
Abstract

Phytoremediation uses plants and associated microbes to remove pollutants from the environment and is considered a promising bioremediation method. Compared with well-described single contaminant treatments, the number of studies reporting phytoremediation of soil mixed pollutants has increased recently. Endophytes, including bacteria and fungi, exhibit beneficial traits for the promotion of plant growth, stress alleviation, and biodegradation. Moreover, endophytes either directly or indirectly assist host plants to survive high concentrations of organic and inorganic pollutants in the soil. Endophytic microorganisms can also regulate the plant metabolism in different ways, exhibiting a variety of physiological characteristics. This review summarizes the taxa and physiological properties of endophytic microorganisms that may participate in the detoxification of contaminant mixtures. Furthermore, potential biomolecules that may enhance endophyte mediated phytoremediation are discussed. The practical applications of pollutant-degrading endophytes and current strategies for applying this valuable bio-resource to soil phytoremediation are summarized.  相似文献   

9.
The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil.  相似文献   

10.
Heavy metal contamination of land and freshwater resources is a serious concern worldwide. It adversely affects the health of animals, plants and humans. Therefore, remediation of toxic heavy metals must be highly considered. Unlike other techniques, phytoremediation is a holistic technology and can be used in large scale for soil remediation as it is costless, novel, environmentally-safe and solar-driven technology. Utilization of non-edible plants in phytoremediation is an ingenious technique as they are used to generate new bioenergy resources along with the remediation of contaminated soils. Some nonfood bioenergy crops such as Salix species, Miscanthus species, Populus species, Eucalyptus species, and Ricinus communis exhibit high capability to accumulate various metals and to grow in contaminated lands. However, there are still sustainable challenges facing coupling phytoremediation with bioenergy production from polluted lands. Therefore, there has long been a need for developing different strategies to resolve such challenges. In this article review, we will discuss the phytoremediation mechanism, the technique of phytoremediation coupling with bioenergy production, sustainable problems facing linking phytoremediation with energy production as well as possible strategies to enhance the efficiency of bioenergy plants for soil decontamination by improving their characteristics such as metal uptake, transport, accumulation, and tolerance.  相似文献   

11.
Phytoremediation in Wetland Ecosystems: Progress,Problems, and Potential   总被引:1,自引:0,他引:1  
Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season, and water chemistry. Conclusions about long-term phytoremediation potential are further complicated by the process of ecological succession in wetlands. This review of wetlands phytoremediation addresses the role of wetland plants in reducing contaminant loads in water and sediments, including metals; volatile organic compounds (VOC), pesticides, and other organohalogens; TNT and other explosives; and petroleum hydrocarbons and additives. The review focuses on natural wetland conditions and does not attempt to review constructed wetland technologies. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. The expansive rhizosphere of wetland herbaceous shrub and tree species provides an enriched culture zone for microbes involved in degradation. Redox conditions in most wetland soil/sediment zones enhance degradation pathways requiring reducing conditions. However, heterogeneity complicates generalizations within and between systems. Wetland phytoremediation studies have mainly involved laboratory microcosm and mesocosm technologies, with the exception of planted poplar communities. Fewer large-scale field studies have addressed remediation actions by natural wetland communities. Laboratory findings are encouraging with regards to phytoextraction and degradation by rhizosphere and plant tissue enzymes. However, the next phase in advancing the acceptance of phytoremediation as a regulatory alternative must demonstrate sustained contaminant removal by intact natural wetland ecosystems.  相似文献   

12.
丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用   总被引:3,自引:1,他引:2  
生态修复是目前全球关注的热点问题,如何增加植被的覆盖度及生态修复效率是目前研究的重点。丛枝菌根真菌(arbuscular mycorrhiza fungi,AMF)和深色有隔内生真菌(dark septate endophyte,DSE)均是自然界植物根际分布广泛的一类内生真菌,均能与植物形成菌根共生体,具有一定的促进植物生长、抵抗逆境及修复污染土壤等功能与作用,在生态修复中具有广泛的应用潜力。本文综述了AMF及DSE两种微生物的功能、作用及其在生态修复应用中的研究进展,并进一步对AMF和DSE在生态修复中存在的问题和前景进行展望。  相似文献   

13.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   

14.
Due to their immutable nature, metals are a group of pollutants of much concern. As a result of human activities such as mining and smelting of metalliferous ores, electroplating, gas exhaust, energy and fuel production, fertilizer and pesticide application, etc., metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology, that uses the remarkable ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, appears very promising for the removal of pollutants from the environment. Within this field of phytoremediation, the utilization of plants to transport and concentrate metals from the soil into the harvestable parts of roots and above-ground shoots, i.e., phytoextraction, may be, at present, approaching commercialization. Improvement of the capacity of plants to tolerate and accumulate metals by genetic engineering should open up new possibilities for phytoremediation. The lack of understanding pertaining to metal uptake and translocation mechanisms, enhancement amendments, and external effects of phytoremediation is hindering its full scale application. Due to its great potential as a viable alternative to traditional contaminated land remediation methods, phytoremediation is currently an exciting area of active research.  相似文献   

15.
Phytoremediation of organic pollutants has become a topic of great interest in many countries due to the increasing number of recorded spill sites. When applying plant remediation techniques to unknown pollutant mixtures, information on the uptake rates as well as on the final fate of the compounds is generally lacking. A range of compounds are easily taken up by plants, whereas others may stay motionless and recalcitrant in the soil or sediment. Uptake is a necessary prerequisite for close contact between the pollutant and the detoxifying enzymes of plants that are localized in the cytosol of living cells. The presence and activity of these enzymes is crucial for a potential metabolization and further degradation of the chemicals under consideration. Conjugation to biomolecules is regarded as a beneficial detoxification reaction. The present review summarizes several prerequisites for pollutant uptake and discusses information on conjugating detoxification reactions. The final fate of compounds is critically discussed and perspectives for phytoremediation are given.  相似文献   

16.
土壤有机污染植物修复的机理与影响因素   总被引:14,自引:1,他引:14  
在综述大量国内外文献的基础上,分析了土壤有机污染植物修复的机理,重点介绍了国内外在植物吸收转运、植物根际降解和植物修复模型的研究进展。同时,从污染物的物理化学性质、植物种类、土壤性质、共存有机物和气象条件5个方面分析了影响土壤有机污染植物修复的主要因素,并展望了该领域的研究方向:深化植物修复机理,完善植物修复模型。加强植物-微生物协同修复的机理研究和技术应用,利用表面活性剂提高植物修复效率,加强复合有机污染植物修复研究。  相似文献   

17.
Soil and water contaminated with arsenic (As) pose a major environmental and human health problem in Bangladesh. Phytoremediation, a plant-based technology, may provide an economically viable solution for remediating the As-polluted sites. The use of indigenous plants with a high tolerance and accumulation capacity for As may be a very convenient approach for phytoremediation. To assess the potential of native plant species for phytoremediation, plant and soil samples were collected from four As-contaminated (groundwater) districts in Bangladesh. The main criteria used for selecting plants for phytoremediation were high bioconcentration factors (BCFs) and translocation factors (TFs) of As. From the results of a screening of 49 plant species belonging to 29 families, only one species of fern (Dryopteris filix-mas), three herbs (Blumea lacera, Mikania cordata, and Ageratum conyzoides), and two shrubs (Clerodendrum trichotomum and Ricinus communis) were found to be suitable for phytoremediation. Arsenic bioconcentration and translocation factors > 1 suggest that these plants are As-tolerant accumulators with potential use in phytoextraction. Three floating plants (Eichhornia crassipes, Spirodela polyrhiza, and Azolla pinnata) and a common wetland weed (Monochoria vaginalis) also showed high BCF and TF values; therefore, these plants may be promising candidates for cleaningup As-contaminated surface water and wetland areas. The BCF of Oryza sativa, obtained from As-contaminated districts was > 1, which highlights possible food-chain transfer issues for As-contaminated areas in Bangladesh.  相似文献   

18.
丛枝菌根在植物修复重金属污染土壤中的作用   总被引:23,自引:0,他引:23  
王发园  林先贵 《生态学报》2007,27(2):793-801
丛枝菌根(Arbuscular mycorrhizae,AM)是自然界中分布最广的一类菌根,AM真菌能与陆地上绝大多数的高等植物共生,常见于包括重金属污染土壤在内的各种生境中。在重金属污染条件下,AM真菌可以减轻重金属对植物的毒害,影响植物对重金属的吸收和转运,在重金属污染土壤的植物修复中显示出极大的应用潜力。重点介绍了AM真菌对植物重金属耐性的影响及其在植物提取和植物稳定中的应用等方面的进展,讨论了未来研究所面临的任务和挑战。  相似文献   

19.
The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation.  相似文献   

20.
修复效率低一直是植物修复技术需要解决的关键问题之一.基于我国的CO2减排压力和CO2对植物生长的必要性,选择C3植物绿豆和C4植物玉米作为修复植物,以DEHP为目标污染物,探索增施CO2对植物修复土壤DEHP污染的影响.结果表明: DEHP对两种植物生长和根际微环境都产生了抑制性影响.增施CO2后,两种植物地上干质量显著增加,叶片SOD酶活性明显下降,根际土壤碱性磷酸酶活性增加,根际微生物群落结构改变,根际耐DEHP胁迫微生物数量增加,表明增施CO2对促进植物生长、增强植物抗DEHP胁迫能力、改善根际微环境有积极作用.增施CO2还促进了两种植物对DEHP的吸收,特别是植物地下部分.这些共同作用导致增施CO2后的两种植物根际DEHP残留浓度明显下降,土壤污染植物修复效率提高.整体上看,增施CO2对C3植物绿豆的影响明显大于C4植物玉米.可以将增施CO2 作为强化植物修复过程的措施之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号