首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The applicability of transgenic plants and plant growth-promoting bacteria to improve plant biomass accumulation as a phytoremediation strategy at a nickel (Ni)-contaminated field site was examined. Two crops of 4-day old non-transformed and transgenic canola (Brassica napus) seedlings in the presence and absence of Pseudomonas putida strain UW4 (crop #1) or P. putida strain HS-2 (crop #1 and 2) were transplanted at a Ni-contaminated field site in 2005. Overall, transgenic canola had increased growth but decreased shoot Ni concentrations compared to non-transformed canola, resulting in similar total Ni per plant. Under optimal growth conditions (crop #2), the addition of P. putida HS-2 significantly enhanced growth for non-transformed canola. Canola with P. putida HS-2 had trends of higher total Ni per plant than canola without P. putida HS-2, indicating the potential usefulness of this bacterium in phytoremediation strategies. Modifications to the planting methods may be required to increase plant Ni uptake.  相似文献   

2.
A greenhouse study was conducted on phytoextraction of cobalt by nickel hyperaccumulators Alyssum murale and Alyssum corsicum and by two varieties of cobalt accumulator Nyssa sylvatica compared with the nonmetal accumulator crop plant Brassica juncea. The plants were grown on Sassafras sandy loam soil (<2 mg Co and 5 mg Ni/kg dry soil), amended with 1 mmol Co/kg dry soil (58.9 mg/kg), and two Ni smelter-contaminated soils, Quarry muck with 24 mg Co and 1720 mg Ni/kg dry soil and Welland loam with 37 mg Co and 2570 mg Ni/kg dry soil. All soils were adjusted to pH 6.5 to prevent Ni phytotoxicity. Of the five plant entries tested in the study, the two Alyssum species demonstrated the most promising Co phytoextraction results. In Co-amended Sassafras soil, the maximum concentration accumulated by Alyssum murale was 1320 mg Co/kg dry weight, which was almost 60 times higher than accumulation by crop plant Brassica juncea. At a single harvest after 60 days of growth, A. murale was able to extract more than 3% of Co from Co-amended soil. As expected, both Alyssum species accumulated up to 1% Ni on dry weight basis when grown on Ni-contaminated soils.

Nyssa sylvatica showed considerable Co accumulation; foliar Co concentration in the second harvest was as high as 800 mg/kg dry weight. The first few leaves that emerged were chlorotic, both in the Co-amended soil and Ni-contaminated soils, but with growth the signs of toxicity disappeared. In the Co amended soil, Co concentration in Nyssa sylvatica leaves was 30% of that found in shoots of Alyssum species, but an order of magnitude higher than that of Brassica juncea. The leaves accumulated a higher concentration compared with the stems.

Both Alyssum species and Nyssa sylvatica offer promise for phytoextraction of Co and 60Co from contaminated or mineralized soils.  相似文献   


3.
In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg?1) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg?1) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.  相似文献   

4.
Yu  Xiumei  Li  Yangxin  Li  Yanmei  Xu  Chaohua  Cui  Yongliang  Xiang  Quanju  Gu  Yunfu  Zhao  Ke  Zhang  Xiaoping  Penttinen  Petri  Chen  Qiang 《Applied microbiology and biotechnology》2017,101(4):1739-1751

Mine tailings contain high concentrations of metal contaminants and only little nutrients, making the tailings barren for decades after the mining has been terminated. Effective phytoremediation of mine tailings calls for deep-rooted, metal accumulating, and soil fertility increasing plants with tolerance against harsh environmental conditions. We assessed the potential of the biofuel leguminous tree Pongamia pinnata inoculated with plant growth promoting rhizobia to remediate iron–vanadium–titanium oxide (V–Ti magnetite) mine tailing soil by pot experiment and in situ remediation test. A metal tolerant rhizobia strain PZHK1 was isolated from the tailing soil and identified as Bradyrhizobium liaoningense by phylogenetic analysis. Inoculation with PZHK1 increased the growth of P. pinnata both in V–Ti magnetite mine tailings and in Ni-contaminated soil. Furthermore, inoculation increased the metal accumulation capacity and superoxide dismutase activity of P. pinnata. The concentrations of Ni accumulated by inoculated plants were higher than the hyperaccumulator threshold. Inoculated P. pinnata accumulated high concentration of Fe, far exceeding the upper limit (1000 mg kg−1) of Fe in plant tissue. In summary, P. pinnataB. liaoningense PZHK1 symbiosis showed potential to be applied as an effective phytoremediation technology for mine tailings and to produce biofuel feedstock on the marginal land.

  相似文献   

5.
The possible arsenic tolerance mechanisms were explored in Arundo donax L. under various supplied arsenic concentrations. The treatments included control (no metal) and five doses of arsenic trioxide i.e., 0, 50, 100, 300, 600 and 1000 μg L−1 As to A. donax. The phytoextraction ability of A. donax L. plants was assessed using both the translocation and bioaccumulation factors. The transpirates were collected to analyze the arsenic concentration volatilized along-with study of anatomical characteristics of the plant parts. In general, the arsenite and arsenate accumulation linearly increased in roots, shoot and leaves with the increasing supplied arsenic levels i.e., from 2.348, 2.775 and 3.25 μg g−1 at 50 μg L−1 to 50, 53.125 and 64.25 μg g−1 arsenite, at 1000 μg L−1, from 4.075, 5.425 and 13.56 μg g−1 at 50 μg L−1 to 71, 62.02 and 436.219 μg g−1 arsenate at 1000 μg L−1, respectively. The order of arsenic accumulation in A. donax L. was: solution As(III) < Root As(III) < Shoot As(III) < Leaf As(III) < Solution As(V) < Root As(V) < Shoot As(V) < Leaf As(V). The range of arsenic volatilization by A. donax L. was 7.2–22% at higher supplied arsenic (300–1000 μg L−1). Volatilization was an important mechanism to avoid toxic effects of arsenic by A. donax L. in addition to bioaccumulation.  相似文献   

6.
In this study an ornamental plant of Althaea rosea Cavan was investigated for its potential use in the removal of Cd, Ni, Pb and Cu from an artificially contaminated soil. Effect of two different chelating agents on the removal has also been studied by using EDTA (ethylenediaminetetracetic acid) and TA (tannic acid). Both EDTA and TA have led to higher heavy metal concentration in shoots and leaves compared to control plants. However EDTA is generally known as an effective agent in metal solubilisation of soil, in this study, TA was found more effective to induce metal accumulation in Althaea rosea Cavan under the studied conditions. In addition to this, EDTA is toxic to some species and restraining the growth of the plants. The higher BCF (Bio Concentration Factor) and TF (Translocation Factor) values obtained from stems and leaves by the effects of the chemical enhancers (EDTA and TA) show that Althaea rosea Cavan is a hyper accumulator for the studied metals and may be cultivated to clean the contaminated soils.  相似文献   

7.
庄静静  王晓冰  郭晖 《广西植物》2020,40(2):151-158
该研究采用盆栽试验法,选取石菖蒲、水生鸢尾、美人蕉、花叶芦竹为试验材料,将石菖蒲、水生鸢尾、美人蕉与花叶芦竹混种,用花叶芦竹单种作为对照,研究了混种对花叶芦竹生物量、根冠比以及铅积累量的影响。结果表明:(1)在不同浓度铅污染处理下,与花叶芦竹单种相比,混种模式增加了花叶芦竹的根冠比,且随着铅污染浓度的增加,表现出先上升后下降的趋势。(2)在单种和混种模式下花叶芦竹体内和土壤内的铅含量均表现出明显的浓度积聚效应;在混种模式下植物体内和土壤内的铅含量明显低于单种模式,且与单种模式之间的差异性显著(P<0.05)。(3)在高浓度铅污染处理下,单种和混种模式的花叶芦竹铅转运系数均大于1,而富集系数则表现为在低浓度和高浓度铅污染处理下均大于1;在美人蕉+花叶芦竹的混种模式中,花叶芦竹的地上部分和地下部分的铅富集系数达到最大。因此,我们认为美人蕉+花叶芦竹混种模式,显著提高了花叶芦竹的生物量和根冠比,并对铅污染土壤的净化效果最佳。  相似文献   

8.
施肥对两种苋菜吸收积累镉的影响   总被引:8,自引:0,他引:8  
李凝玉  李志安  庄萍  傅庆林  郭彬 《生态学报》2012,32(18):5937-5942
通过盆栽试验,研究了生长在5 mg/kg镉(Cd)污染土壤中的两种苋菜(红苋(Amaranthus Paniculatus L.)和绿苋(Amaranthus Paniculatus L.))在3种施肥处理下(N、NP和NPK)的生长状况和对Cd的吸收积累情况。结果表明,两种苋菜能够在污染土壤中正常生长,各器官中叶Cd含量最高,范围为124.1—225.9 mg/kg;根中次之,范围为57.1—100.6 mg/kg;茎中最低,范围为56.2—87.6 mg/kg;富集系数高达22.4—40.2。施加N,NP,NPK肥对两种苋菜器官中的Cd含量和生物量有显著影响。其中,施加NPK肥使红苋和绿苋的生物量分别达到不施肥(对照)处理的3.5和3.2倍,单株提取Cd的总量是对照3.2和5.0倍。综上表明,两种苋菜(红苋和绿苋)具有生物量大、易栽培、施加NPK肥能够大幅增加生物量的同时不减少器官对Cd的吸收等优点,作为Cd污染土壤的修复植物有巨大应用前景。  相似文献   

9.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

10.
Summary Chromium applied to a noncalcareous soil at 50 ppm did not decrease yields of bush beans (Phaseolus vulgaris L. var Improved Tendergreen), but when EDTA (ethylenediamine tetraacetic acid) was added with it, it did. Very little Cr was present in leaves. In solution culture 10-5 M Cr and higher were toxic. With solution culture the highest level of Cr in leaves was about 30 ppm and in general there was a decreasing gradient in Cr from roots to stems to leaves. EDTA had less effect in solution cultures on Cr toxicity because the Cr was already in solution. Chromium toxicity decreased cation levels in plants.  相似文献   

11.
Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L. usitatissimum (flax) in the presence of Glomus intraradices. Flax seedlings of both inoculated with G. intraradices and non-inoculated were exposed to different concentrations i.e., 250, 350 and 500 ppm of Ni at different time intervals. Analysis of physiological parameters revealed that Ni depressed the growth and photosynthetic activity of plants. However, the inoculation of plants with arbuscular mycorrhizae (G. intraradices) partially helped in the alleviation of Ni toxicity as indicated by improved plant growth under Ni stress. Ni uptake of non- mycorrhizal flax plants was increased by 98% as compared to control conditions whereas inoculated plants showed 19% more uptake when compared with the non-inoculated plants. Mycorrhizal plants exhibited increasing capacity to remediate contaminated soils along with improved growth. Thus, AM assisted phytoremediation helps in the accumulation of Ni in plants to reclaim Ni toxic soils. Based on our findings, it can be concluded that the role of flax plants and mycorrhizal fungi is extremely important in phytoremediation.  相似文献   

12.
《Aquatic Botany》2005,81(1):27-36
Arundo donax L. is a tall perennial reed classified as an emergent aquatic plant. In California, it has invaded riparian zones, where it acts as a transformer species. Because plant growth and leaf quality influence the effectiveness of management techniques, we sought to determine if these characters varied temporally and spatially in a northern California population of A. donax. Tissue C and N content and C:N ratio varied during the growing season. Leaf N was higher in spring and in plants that were closer to a stream. It was significantly negatively related to the clump's distance from the stream but not related to its elevation relative to the stream. Plants near the stream produced taller stems with more leaves per stem than those more distant from the stream. RGR differed across time and space. It was highest in spring prior to the appearance of flowers on a few stems that were >1 year old within the clumps. Decline in RGR as the growing season progressed coincided with the appearance of branches and flowers on stems <1 year old on a few plants within the studied population. RGR was significantly related to the N content and C:N ratio of leaves on mature stems (>1 year old). This implies that the decrease in stem growth reflected changes in nutrient availability within the entire A. donax clump and not just in the growing stems (<1 year old). These findings have implications for timing of management techniques.  相似文献   

13.
We investigated the concentration of Aluminium (Al), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni) and Zinc (Zn) in the root and aboveground organs of four halophyte species (Salicornia europaea, Suaeda maritima, Salsola soda and Halimione portulacoides), as well as in the soil from maritime and inland saline areas. The aim of our research was to evaluate the capability of some halophyte species to absorb different heavy metals and to detect differentiation of heavy metal accumulation within populations from inland and maritime saline areas. Generally, the plant roots had significantly higher concentrations of metals when compared to stems and leaves. Zinc was the only metal with concentrations significantly higher in the leaves than in the root and stem. Populations from maritime saline areas had higher trace root and stem metal concentrations than populations from inland saline areas. Excepting zinc, populations from inland saline areas had higher heavy metal concentrations in the leaves. The factors that affected metal accumulation by halophytes included the percentage of salt in the soil. We also discuss the potential use of these halophytes in phytoremediation.  相似文献   

14.
Arundo donax L. has a high biomass production and a tendency toward community dominance in many habitats and thereby a tolerance to a wide range of environmental conditions. Therefore, the present study investigated the potentiality of A. donax to accumulate nutrients and trace metals in its biomass. Six main habitats (Nile Bank, Drain Bank, Canal Bank, Field Edges, Railways and Roadsides) were recognized. At each habitat, six quadrats (each 1 m2), distributed equally in two sites, were selected for growth measurements (e.g., density, shoot height, diameter, leaf area and biomass), plant and soil analyses. Plants from Nile, Canal and Drain Banks had the highest values of most growth measurements, while those from Railways and Roadsides had the lowest. Canal Bank plants accumulated the highest concentrations of P, Cu and Pb in their leaves; Zn in the stem; and Mg, Cd and Fe in the rhizome. The bioaccumulation factor (BF) of A. donax, for Cd, Fe, Mn and Zn, was greater than 1, while the translocation factor (TF) of most trace metals was less than unity in most habitats. In conclusion, A. donax showed morphological plasticity in response to habitat heterogeneity, and its growth was most vigorous in the riparian habitats. The high BF, as well as the significant positive correlations between trace metals, especially Cd, in soil and plant, renders A. donax a powerful phytoremediator.  相似文献   

15.
芦竹(Arundo donax)对多种重金属都有较好的耐受性,是植物修复技术较理想的选择,而关于芦竹对Cd和Tl胁迫生理反应的相关研究却较少,为了有效治理Cd和Tl的污染,本研究以芦竹为材料,通过添加不同浓度重金属Tl(4,10和20 mg·kg~(-1))、Cd(50,100和200 mg·kg~(-1))进行芦竹盆栽试验,测定芦竹的株高、分蘖数、叶绿素含量、光合生理指标以及Tl和Cd在芦竹中的累积量,探讨芦竹对Tl和Cd胁迫的响应机制。结果表明:Tl(4~20 mg·kg~(-1))和Cd(50~200 mg·kg~(-1))对芦竹株高、分蘖数以及叶绿素含量均无显著影响(P0.05);芦竹体内Tl和Cd含量随着Tl和Cd浓度的升高呈上升趋势,芦竹体内Tl含量的分布规律为根茎叶,Cd含量的分布规律:Cd浓度50 mg·kg~(-1)时为茎叶根,Cd浓度100和200 mg·kg~(-1)时为根茎叶,表明Tl和Cd主要分布在根部,芦竹对Tl、Cd有一定的富集能力。Cd和Tl处理均显著降低芦竹叶片的胞间CO2浓度,在Tl浓度为10 mg·kg~(-1)时,净光合速率、气孔导度和蒸腾速率得到显著提高,当Cd浓度为50 mg·kg~(-1)时,净光合速率、气孔导度和蒸腾速率得到显著提高。这表明芦竹对重金属Cd和Tl有较强的耐受性,可为Cd和Tl污染土壤的治理和修复提供参考。  相似文献   

16.
In this study, some ornamental plant species such as Althaea rosea Cavan, Lonicera japonica Thunb, Salvia virgata Jacq. (Lamiaceae), and Dahlia hybrida growing in the natural vegetation of Black Sea Region (Turkey) were investigated for their phytoextraction potential of cadmium (Cd) from artificially contaminated soil of 10, 25, 50, and 100 mg/kg concentration under pot conditions. Effect of ethylenediaminetetracetic acid (EDTA) on this removal has also been studied. To evaluate the removal efficiency of the studied plants, the bioconcentration factor (BCF) and translocation factor (TF) values were also calculated. Higher BCF and TF values obtained from stems and leaves of A. rosea Cavan, L. japonica Thunb, and S. virgata Jacq. (Lamiaceae) show that those plants might be cultivated and used as hyperaccumulators in the removal of Cd from the contaminated soils. EDTA enhanced the Cd phytoextraction in plants; however, at the same time it resulted in a slight decrease in the dry matter.  相似文献   

17.
Arundo donax L. (Poaceae) is an aggressive invader in California’s riparian habitats. Field experiments were conducted to examine invader and site attributes important in early invasion. One hundred A. donax rhizomes were planted along five transects into each of three southern California riparian habitats. Pre-planting rhizome weight was recorded, along with site variables including percent bare ground, litter depth, PAR, soil moisture, soil temperature, incidence of herbivory, native canopy cover, and plant community richness and diversity. A. donax shoot emergence, survival time, and shoot height were recorded for approximately 10 months. The experiment was repeated over three years in different locations within each site. When years and sites were pooled to reveal large-scale patterns, A. donax performance was explained by rhizome weight, soil moisture, bare ground, soil temperature, and herbivory. When each site was considered singly, A. donax was positively correlated with different variables in each location. Species richness was correlated with A. donax performance in only one site. Our results indicate that A. donax establishment in riparian habitats is promoted by both vegetative reproduction and favorable abiotic environmental factors and relatively unaffected by the composition of the native community. The positive response of A. donax to disturbance (bare ground) and high resource availability (soil moisture), combined with a competitive perennial habit suggest that this species takes advantage of a competitive-ruderal life history. The ability of A. donax to respond to different conditions in each site combined with low genetic and phenotypic variation seen in other studies also suggests that a high degree of environmental tolerance contributes to invasion success.  相似文献   

18.
While mowing‐induced changes in plant traits and their effects on ecosystem functioning in semi‐arid grassland are well studied, the relations between plant size and nutrient strategies are largely unknown. Mowing may drive the shifts of plant nutrient limitation and allocation. Here, we evaluated the changes in nutrient stoichiometry and allocation with variations in sizes of Leymus chinensis, the dominant plant species in Inner Mongolia grassland, to various mowing frequencies in a 17‐yr controlled experiment. Affected by mowing, the concentrations of nitrogen (N), phosphorus (P), and carbon (C) in leaves and stems were significantly increased, negatively correlating with plant sizes. Moreover, we found significant trade‐offs between the concentrations and accumulation of N, P, and C in plant tissues. The N:P ratios of L. chinensis aboveground biomass, linearly correlating with plant size, significantly decreased with increased mowing frequencies. The ratios of C:N and C:P of L. chinensis individuals were positively correlated with plant size, showing an exponential pattern. With increased mowing frequencies, L. chinensis size was correlated with the allocation ratios of leaves to stems of N, P, and C by the tendencies of negative parabola, positive, and negative linear. The results of structure equation modeling showed that the N, P, and C allocations were co‐regulated by biomass allocation and nutrient concentration ratios of leaves to stems. In summary, we found a significant decoupling effect between plant traits and nutrient strategies along mowing frequencies. Our results reveal a mechanism for how long‐term mowing‐induced changes in concentrations, accumulations, ecological stoichiometry, and allocations of key elements are mediated by the variations in plant sizes of perennial rhizome grass.  相似文献   

19.
Pantropical species of the genera Phyllanthus and Euphorbia and the Cuban endemic genus Leucocroton from the Euphorbiaceae family, were selected for nickel localization microanalysis. Scanning Electron Microscopy coupled with Energy Dispersive X-ray Microanalysis (SEM-EDX) was used for qualitative detection of nickel in the selected Ni-hyperaccumulator species: Euphorbia helenae, Leucocroton linearifolius, L. flavicans Phyllanthus orbicularis, P. discolor and P. xpallidus, all collected from Cuban ultramafic soils. The leaves and stems from the Euphorbiaceae species analyzed were the organs with higher nickel accumulation. Elemental mapping of leaves and stem tissues from these species have been compared. The highest Ni concentrations were found in the laticifer tubes of stems and the epidermis tissues of leaves in all the analyzed species, suggesting a general pattern of the Euphorbiaceae family for nickel accumulation. The high nickel concentrations and its rather homogeneous distribution found in leaves of these Ni-hyperaccumulating plants suggest a possible role in protection mechanisms against environmental stress, such as UV irradiation.  相似文献   

20.
Abstract

Plant growth stimulating bacteria are very effective in immobilization of metals and reducing their translocation in plants through precipitation, and adsorption. A pot experiment was conducted to investigate the effectiveness of chitosan- and hematite-modified biochar and bacterial inoculations on the immobilization of nickel (Ni) in polluted soil under wheat cultivation. Application of modified biochars and inoculation with Pseudomonas putida significantly increased both wheat root and shoot dry matter yields but decreased Ni phytoextraction efficiency. The Ni concentration, translocation factor and uptake in wheat shoot and root significantly decreased the application of either modified or unmodified biochars. Bacterial inoculation significantly decreased mean translocation factor and also root and shoot concentration and the uptake Ni in the shoot. Chitosan-modified biochar was the most influential treatment in decreasing Ni uptake by wheat followed by P. putida inoculation treatment. The results demonstrated positive effects of chitosan modified biochar and inoculation with P. putida in increasing dry matter yield and decreasing Ni uptake in wheat grown on Ni-contaminated soil. According to the results of present study, modified biochars application and bacterial inoculation are influential treatments which prevent Ni toxicity probably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号