首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50–1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86–92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.  相似文献   

2.
Alfalfa was cultivated in two potted soil series obtained from two sandy soils contaminated by Cu (SM) and metal(loids)/PAH (CD). Shoot production was monitored for 8 weeks. Then, larvae of Spodoptera exigua were reared on alfalfa of both soil series for eight days. A biotest (using Phaseolus vulgaris) was used to assess the soil phytotoxicity. Increasing soil contamination reduced P. vulgaris growth, but alfalfa growth was only reduced on the SM soil series. Exposure to the SM soil was mirrored by shoot Cu and Cr concentrations of alfalfa (respectively, in mg kg ?1 DW, Cu and Cr ranged from 11.9 and 0.4 in the CTRL soil to 98.5 and 1.2 in the SM one). Exposure to the CD soil series was mirrored by shoot Zn concentrations (i.e., 48–91.6 mg kg?1 DW). Internal metal(loid) concentrations of S. exigua remained generally steady across both soil series (respectively Cd 0.05–0.16, Cr 0.5–3.3, Cu 5.8–98.5, Ni 0.6–1.6, Pb 0.4–1.3, and Zn 57–337 mg kg?1 DW), and most of the associated transfer factors were lower than 1. Here, due to the excluder phenotype of alfalfa across our TE contamination gradients, S. exigua could cope with high total metal(loid) concentration in both contaminated soils.  相似文献   

3.
Contamination by heavy metals is one of the most serious environmental problems generated from human activities. Because phytoremediation utilizes plants to uptake contaminants, it could potentially be used to remediate metal-contaminated areas. A pot culture experiment with four levels of cadmium (Cd) (0, 20, 40, and 80 mg of Cd/kg dry soil) was conducted to investigate Cd accumulation and tolerance of roots, shoots, and leaves of Lagerstroemia indica and Lagerstroemia fauriei as well as their potential for phytoremediation. Experimental results indicated that Cd inhibited seedling growth only at the higher Cd exposure concentration (40 and 80 mg/kg). The tolerance index revealed that on average L. indica is more tolerant of Cd than L. fauriei. Moreover, plants in the experiment accumulated Cd differentially. In comparisons between L. indica and L. fauriei, the leaves of the former had higher concentrations of Cd, while the roots of latter had higher concentrations of Cd. Furthermore, the roots, shoots, and leaves had very high bioaccumulation factors that markedly exceeded 1.0 (exceptional only in shoots of 80 mg/kg for L. fauriei), indicating that the seedlings extracted Cd from the soil. The leaves' translocation factor of L. indica was greater than 1.0, being significantly higher than that of L. fauriei. Chlorophyll a, Chlorophyll b and total declined in both species significantly as Cd concentrations exceeded 40 mg/kg in the soil. In contrast, lipid peroxidation and proline content was found to increase with increasing Cd concentration. From the assessments of biomass production, Cd tolerance and uptake L. indica and L. fauriei could stand as excellent species for remediating Cd-contaminated soils.  相似文献   

4.
Kim  C.-G.  Bell  J. N. B.  Power  S. A. 《Plant and Soil》2003,257(2):443-449
The effects of Cd on the growth and distribution of Cd and mineral nutrients within plant tissues were investigated for Pinus sylvestris L. seedlings grown in mineral forest soil with increasing levels of Cd addition (0–100 mg kg–1). Approximately 20% of added Cd was found to be extractable from sandy loam forest soil. Root growth was less affected by Cd than shoot growth, which showed a significant reduction in the 100 mg Cd kg–1 treatment. Cadmium accumulated in roots up to 325 mg kg–1. Decreased concentrations of K in needles and Ca in stems with increasing Cd levels suggest a disturbance of mineral nutrition as a result of Cd addition.  相似文献   

5.
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012–2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil?1 accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.  相似文献   

6.
A two-year in-situ phytoremediation trial was launched in Shenyang Zhangshi (Sewage) Irrigation Area (SZIA). The phytoremediation efficiency of Solanum nigrum L. was determined, by both monitoring the change of soil Cadmium level in the upper 20 cm of soil, and calculating the plant uptake of soil Cd. After two years experimental, by monitoring the soil Cd concentrations, The Cd concentrations decreased on average from 2.75 mg kg?1to 2.45 mg kg?1 in the first year and from 2.33 mg kg?1 to 1.53 mg kg?1 in the second year, amounting to a decrease by a factor of 10.6% in the first year and 12% in the second year. After two years phytoremediation by S. nigrum, Cd concentrations of the seven experimental plots with S. nigrum growth decreased from 2.75 mg kg?1 to 1.53 mg kg?1, a decrease by a factor of 24.9%. And the soil Cd concentration decreased only 2.1% and 1.7% in the bared experimental plot. And the calculating of Cd uptake by S. nigrum shown that, the plants uptake 4.46% and 5.18% of the total soil Cd in 2008 and 2009, while the soil Cd concentrations decreased by a factor of 10.6% in 2008 and 12.1% in 2009.  相似文献   

7.
An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg–1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg–1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.  相似文献   

8.
Heavy metals accumulation in soils poses a potential threat to ecosystems, which, in turn, threat human health through food chains. Therefore, remediating polluted sites is important to environment and humanity. In this investigation, statice (L. sinuatum) was exposed to Cd (0, 15, 30, 60 mg kg?1 soil) or Pb (0, 100, 150, 300 mg kg?1 soil) in a pot experiment to assess its tolerance to each metal and study its phytoaccumulation capability. The benefits of mycorrhization (mixture of Glomus mosseae and G. intraradices) were also studied simultaneously. Single exposure to Cd or Pb reduced the plant growth, but statice was still relatively tolerant to both metals. The plants accumulated both metals in their roots; little was translocated to the shoots. Total Pb and total Cd accumulated by the roots was approximately 2 and 3 times higher in mycorrhizal than non-mycorrhizal plants (49 versus 147 and 595 versus 956 μg plant?1) respectively; however, mycorrhization alleviated metal phytotoxicity. The results suggest that statice is a potential candidate to be used as an ornamental plant in lead and cadmium polluted sites, mainly inoculated with arbuscular mycorrhizae. Besides that, it would be useful as a Pb or Cd controlling agent by means of phytostabilization.  相似文献   

9.
Monoculture and intercrop of hyperaccumulator Solanum nigrum L. with low accumulation Welsh onion Renbentieganchongwang were conducted. The results showed that the remove ratio of S. nigrum to Cd was about 7% in intercrop plot when top soil (0–20 cm) Cd concentration was 0.45–0.62 mg kg?1, which did not significantly impact the yield of low accumulation Welsh onion compared to the monoculture. The consistency of remove ratio in practice and theory indicated the remediation of S. nigrum to Cd was significant. The Cd concentration and yield of Welsh onion were not affected by the growth of S. nigrum either in intercrop plot. The Cd concentration in edible parts of Welsh onion was available either. In short, inter-planting hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit), which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future.  相似文献   

10.
Three strawberry (Fragaria × ananassa Duch.) cultivars Rainier, Totem and Selva were grown under greenhouse conditions in a Parkhill sandy loam soil with a background DTPA-extractable Cd concentration of 0.18 mg kg-1 and a pH of 5.1. Experimental treatments included combinations of 4 Cd applications (0, 15, 30 and 60 mg Cd kg-1 soil) applied as CdSO4 and 2 soil pH values 5.1 and 6.8. Both the application of Cd and pH of the soil significantly affected plant growth, yield and Cd accumulation in plant tissue anf fruit. Although roots accumulated the highest concentrations of Cd of all plant parts investigated, increased soil Cd application reduced leaf weight more than root weight. In general, yield of strawberries was decreased by an increase in amount of soil-applied Cd, however the yield response varied among cultivars. At 60 mg Cd kg-1 soil, yield of Rainier cultivar was reduced to 17.6% of control plants. Over 90% of total Cd taken up by plants grown in Cd-treated soil accumulated in roots, regardless of the Cd level in the soil. Root Cd concentrations ranged from 2.6 mg kg-1 (control plants) to 505.7 mg kg-1 (Totem plants grown in soil at highest Cd and a soil pH 5.1) and were directly related to soil Cd concentrations. Cd translocation from roots to leaves and fruit was very limited, resulting in a maximum Cd concentration in root leaf tissue of 10.2 mg kg-1. Accumulation of Cd in fruit was found to correlate well with leaf Cd, although even at the highest amount of applied Cd, fruit Cd concentration did not exceed 700 g kg-1 of fresh weight.Contribution no. 951  相似文献   

11.
The efficiency of Trichoderma harzianum (MIAU 145 C) in promoting kidney bean (cv. Goli) growth in different soil texture (sandy loam, loam and clay loam) and organic matter content (0.5 and 2% of leaf litter) was assessed in a factorial experiment in the absence of Meloidogyne javanica. In another factorial experiment, the effect of soil texture, soil organic content and control measure (no control, 10?ml of T. harzianum containing 106 spore ml?1 and 2?mg ai cadusafos kg?1 soil) was determined on nematode-infected kidney bean’s growth, fungus controlling activity and M. javanica reproduction. Except for the shoot length, the fungus improved plant growth. Clay loam was not a proper soil type for the cultivation of kidney bean plants (even in the soil without nematode), but the plant grew better in sandy loam and loam soil. The presence of leaf litter in the soil enhanced plant growth, increased fungal efficiency and increased nematode reproduction. It seems that T. harzianum can activate the plant defence system in sandy loam soil. T. harzianum was more effective in sandy loam or loam soil containing 2% organic matter (leaf litter) and reduced the reproduction factor of the nematode in the tested soil textures equally to the chemical nematicide treatment.  相似文献   

12.
Phytoextraction is a green technique for the removal of soil contaminants by plants uptake with the subsequent elimination of the generated biomass. The halophytic plant Suaeda vera Forssk. ex J.F.Gmel. is an native Mediterranean species able to tolerate and accumulate salts and heavy metals in their tissues. The objective of this study was to explore the potential use of S. vera for soil metal phytoextraction and to assess the impact of different chelating agents such as natural organic acids (oxalic acid [OA], citric acid [CA]), amino acids (AA) and Pseudomonas fluorescens bacteria (PFB) on the metal uptake and translocation. After 12 months, the highest accumulation of Cu was observed in the root/stem of PFB plots (17.62/8.19 mg/kg), in the root/stem of CA plots for Zn (31.16/23.52 mg/kg) and in the root of OA plots for Cr (10.53 mg/kg). The highest accumulation of metals occurred in the roots (27.33–50.76 mg/kg). Zn was the metal that accumulated at the highest rates in most cases. The phytoextraction percentages were higher for Cu and Zn (~2%) with respect to Cr (~1%). The percentages of metal removal from soil indicate the need to monitor soil properties, to recognize the influence of each treatment and to increase the concentration of bioavailable metals by the use of agricultural management practices aimed at promoting plant growth.  相似文献   

13.
Aldicarb or Du Pont 1410 (S-methyl 1-(dimethylcarbamoyl)-N-[(methylcarbamoyl) oxy] thioformimidate) at 2.6–11.2 kg a.i./ha applied to the soil at planting time controlled potato cyst-nematode, Heterodera rostochiensis, in sandy loam, peaty loam and silt loam and greatly increased tuber yields of susceptible potatoes. Nemacur (O-ethyl-O-(3-methyl-4-methylthiophenyl) isopropylamido-phosphate) controlled potato cyst-nematode in sandy loam at 2.9–10.3 kg a.i./ha and in silt loam at 11.2 kg a.i./ha but did not control the nematode well in peaty loam even at 22.4 kg a.i./ha. In peaty loam aldicarb and Nemacur were more effectively incorporated by rotavation than by a modified power harrow.  相似文献   

14.
The cadmium (Cd) resistant bacteria were isolated from soils of Damanganga river, Vapi, and identified 11 potential Cd resistant bacteria based on 16S rDNA sequences. The Cd resistant bacteria belonged to four different genera: Providencia spp., Morganella sp., Stenotrophomonas sp., and Bacillus spp. The assessment of plant growth-promoting (PGP) parameters revealed that the Cd tolerant bacteria showed one or more PGP properties. Further, a pot experiment was conducted to elucidate the effects of Cd resistant bacteria on the plant growth and the uptake of Cd by Sesbania bispinosa. The bacterized seedlings recorded 36.0–74.8% and 21.2–32.9% higher root and shoot lengths, respectively, in Cd amended soil compared with control. The Cd mobilization in the root of S. bispinosa by microbial inoculants ranged from 0.02 ± 0.01 to 1.11 ± 0.06 ppm. The enhanced concentrations of Cd accumulation in S. bispinosa roots correspond to the effect of the bacterial strains on metal mobilization in soil. The present observations showed that the Cd resistant strains protect the plants against the inhibitory effects of Cd, probably due to the production of PGP properties. The present results provided a new insight into the phytoremediation of Cd contaminated soil.  相似文献   

15.
Impatiens walleriana plants accumulate sufficiently high concentrations of cadmium (Cd) for this species to be considered a potential Cd hyperaccumulator. Rooted cuttings were grown hydroponically for 25 and 50 days in solutions spiked with various Cd concentrations. The subcellular distribution and chemical forms of Cd in different organs were analyzed, and its upward translocation was also assessed. The plants accumulated large amounts of Cd; the Cd concentration in the roots and shoots reached 120–1900 and 60–1600 mg/kg, respectively. Regardless of the growth period, the Cd accumulated in the roots was primarily compartmentalized in the soluble fraction or ethanol and deionized water extractable chemical forms with high migration abilities. Translocation to the shoots was followed by an association of Cd mainly in the cell wall or with pectate and protein. The roots’ Cd showed a high migration capacity for predicting the shoots’ Cd concentrations. Different exposure periods significantly affected the subcellular distribution of Cd in the stems, and thus the upward translocation.  相似文献   

16.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

17.
A series of field trials were conducted to investigate the potential of Noccaea caerulescens F.K. Mey [syn. Thlaspi caerulescens J &C Presl. (see Koch and Al-Shehbaz 2004)] populations (genotypes) derived from southern France to phytoextract localized Cd/Zn contamination in Thailand. Soil treatments included pH variation and fertilization level and application of fungicide. N. caerulescens populations were transplanted to the field plots three months after germination and harvested in May, prior to the onset of seasonal rains. During this period growth was rapid with shoot biomass ranging from 0.93–2.2 g plant–1 (280–650 kg ha–1) DW. Shoot Cd and Zn concentrations for the four populations evaluated ranged from 460–600 and 2600–2900 mg kg–1 DW respectively. Cadmium and Zn Translocation Factors (shoot/root) for the populations tested ranged from 0.91–1.0 and 1.7–2.1 and Bioaccumulation Factors ranged from 12–15 and 1.2–1.3. We conclude that optimizing the use of fungicidal sprays, acidic soil pH, planting density and increasing the effective cropping period will increase rates of Cd and Zn removal enough to facilitate practical Cd phytoextraction from rice paddy soils in Thailand.  相似文献   

18.
Aldicarb, or Du Pont 1410 (S-methyl-I-(dimethylcarbamoyl)-N-[(methyl-carbamoyl)oxy]thioformimidate), at 2.8–22.4 kg a.i./ha incorporated in the seed-bed before sowing greatly increased the yield of peas in a clay loam and two sandy clay soils infested with pea cyst-nematode, Heterodera goettingiana, and lessened or prevented increase in the number of nematodes. CibaGeigy 10576 (an organophosphorus compound) at 5.6–22.4 kg a.i./ha was similarly effective in a sandy clay soil. Dowco 275 (O, O-diethylO-(6-fluoro-2 pyridyl) phosphorothioate) at 5.6 or 11.2 kg a.i./ha also controlled the nematode well in the clay loam and in a sandy clay soil but although it greatly increased the yield of peas in the clay loam, it did not increase yield in the sandy clay.  相似文献   

19.
Water is a key limiting factor for vegetation restoration in the semi-arid areas of China. Caragana korshinkii Kom is a shrub that is widely planted in this region to control soil erosion and land desertification. The objective of this study was to investigate the fine root distribution of mature C. korshinkii and its water consumption, when grown in either silt loam or sandy soils, in order to understand differences between the water cycles of two such soils found in the transition zone between fertile loess hills and desert of the Northern Loess Plateau. Fine root distributions were measured using the trench-profile method. Soil water dynamics were monitored with a neutron probe during two growing seasons. The results showed that fine root area density (FRAD) declined with increasing soil depth in both soils, with 70.7% and 96.6% of the total fine roots being concentrated in the upper 1-m layer of the silt loam and sandy soils, respectively. Water consumption by C. korshinkii in the silt loam was close to that in the sandy soil. Most water consumption in both soil types was from the upper 1-m layer. Little variation in plant available water (PAW) occurred in the 3–6 m soil layer during the whole study period. However, in this layer, the PAW was significantly lower in the silt loam soil than in the sandy soil. Total actual evapotranspiration (ETa) was slightly higher from the sandy soil plots than from those of the silt loam soil during both growing seasons. Our study indicated that mature C. korshinkii effectively uses about the same amount of water from either the silt loam or sandy soils, but that more soil water at depth was extracted from silt loam soil than from sandy soil.  相似文献   

20.
Fine root dynamics have the potential to contribute significantly to ecosystem‐scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m?2 yr?1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=?0.96 year?1) than in the sandy loam soil (k=?0.61 year?1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm?2 h?1) than in the sandy loam (1.4±0.2 ng N cm?2 h?1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1‐year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m?2 yr?1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr?1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land‐use change can contribute significantly to increased rates of nitrogen trace gas emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号