首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the influence of exogenously sourced ethylene (200 μL L?1 ethephon) in the protection of photosynthesis against 200 mg kg?1 soil each of nickel (Ni)- and zinc (Zn)-accrued stress in mustard (Brassica juncea L.). Plants grown with Ni or Zn but without ethephon exhibited increased activity of 1-aminocyclopropane carboxylic acid synthase, and ethylene with increased oxidative stress measured as H2O2 content and lipid peroxidation compared with control plants. The oxidative stress in Ni-grown plants was higher than Zn-grown plants. Under metal stress, ethylene protected photosynthetic potential by efficient PS II activity and through increased activity of ribulose-1,5-bisphosphate carboxylase and photosynthetic nitrogen use efficiency (P-NUE). Application of 200 μL L?1 ethephon to Ni- or Zn-grown plants significantly alleviated toxicity and reduced the oxidative stress to a greater extent together with the improved net photosynthesis due to induced activity of ascorbate peroxidase and glutathione (GSH) reductase, resulting in increased production of reduced GSH. Ethylene formation resulting from ethephon application alleviated Ni and Zn stress by reducing oxidative stress caused by stress ethylene production and maintained increased GSH pool. The involvement of ethylene in reversal of photosynthetic inhibition by Ni and Zn stress was related to the changes in PS II activity, P-NUE, and antioxidant capacity was confirmed using ethylene action inhibitor, norbornadiene.  相似文献   

2.
Pteris vittata is known as an arsenic hyperaccumulator, but there is little information about its tolerance to cadmium and on its ability to accumulate this heavy metal. Our aim was to analyse the accumulation capacity, oxidative stress and antioxidant response of this fern after cadmium treatments. Cadmium content, main markers of oxidative stress and antioxidant response were detected in leaves of plants grown in hydroponics for both short- (5 days) and long- (15 days) term exposure to 0 (control) 60 and 100 μM CdCl2. In leaves, the concentration of cadmium and oxidative stress were parallel with the increase of cadmium exposure. In the short-term exposure, antioxidant response was sufficient to contrast cadmium phytotoxicity only in 60 μM cadmium-treated plants. In the long-term exposure all treated plants, in spite of the increase in activity of some peroxide-scavenging enzymes, showed a significant increase in oxidative damage. As in the long-term stress markers were comparable in all treated plants, with no clear correlation with hydrogen peroxide content, at least part of cadmium-induced oxidative injury seems not mediated by H2O2. Based on our studies, P. vittata, able to uptake relatively high concentrations of cadmium, is only partially tolerant to this heavy metal.  相似文献   

3.
Kosteletzkya virginica is a wetland halophyte that is a good candidate for rehabilitation of degraded salt marshes and production of oil as biodiesel. Salt marshes are frequently contaminated by heavy metals. The distribution of Zn in vegetative and reproductive organs of adult plants, and the NaCl influence on this distribution remain unknown and were thus explored in the present study. Plants were cultivated in a nutrient film technique system, from seedling stage until seed maturation in a control, Zn (100 μM), NaCl (50 mM) or Zn + NaCl medium. Photosynthesis, ion nutrition, malondialdehyde and non-protein thiol concentrations were quantified. Zinc distribution in reproductive organs was estimated by a laser ablation-inductively coupled plasma-mass spectrometry procedure (LA-ICP-MS). Adult plants accumulated up to 2 mg g?1 DW Zn in the shoots. Zinc reduced plant growth, inhibited photosynthesis and reduced seed yield. Zinc accumulation in the seeds was only two times higher in Zn-treated plants than in controls. Exogenous NaCl neutralized the damaging action of Zn and modified the Zn distribution through a preferential accumulation of toxic ions in older leaves. Zinc was present in seed testa, endosperm and, to a lower extent, in embryo. Additional NaCl induced a chalazal retention of Zn during seed maturation and reduced final Zn seed content. It is concluded that NaCl 50 mM had a positive impact on the response of K. virginica to Zn toxicity and acts through a modification in Zn distribution rather than a decrease in Zn absorption.  相似文献   

4.
Rice (Oryza sativa L.) seedlings were treated with different concentrations of copper (Cu) either in presence or absence of zinc (Zn), and different events were investigated to evaluate the ameliorative effect of Zn on Cu stress. In presence of high Cu concentration, growth of both root and shoots were considerably reduced. Decline in elongation and fresh mass was observed in root and shoot. Zn alone did not show any considerable difference as compared to control, but when supplemented along with high concentration Cu, it prompted the growth of both root and shoot. After 7 days, root growth was 9.36 and 9.59 cm, respectively, at 200 and 500 μM of Cu alone as compared to 10.59 and 12.26 cm at similar Cu concentrations, respectively, in presence of Zn. Cu accumulation was considerably high after 7 days of treatment. In absence of Zn, significant accumulation of Cu was observed. Zn supplementation ameliorated the toxic impact of Cu and minimized its accumulation. Cu treatment for 1 and 7 days resulted in a dose-dependent increase in hydrogen peroxide (H2O2). When Cu was added in presence of Zn, the H2O2 production in root and shoot was reduced significantly. The increase in H2O2 production under Cu stress was accompanied by augmentation of lipid peroxidation. In absence of Zn, Cu alone enhanced the malondialdehyde (MDA) production in both root and shoot after 1 and 7 days of treatment. The MDA content drastically reduced in root and shoot as when Zn was added during Cu treatment. The activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GPX) were elevated under Cu stress both in root and shoot. Addition of Zn further stimulated the activities of these enzymes. Both ascorbate (AsA) and glutathione (GSH) contents were high under Cu stress either in presence or absence of Zn. The results suggests that Zn supplementation improves plant survival capacity under high Cu stress by modulating oxidative stress through stimulation of antioxidant mechanisms and restricts the accumulation of toxic concentrations of Cu.  相似文献   

5.
A hydroponic experiment was conducted to study the ameliorative effects of separate or combined application of exogenous glutathione (GSH), selenium (Se) and zinc (Zn) upon 20 μM cadmium (Cd) plus 20 μM chromium (Cr) heavy metal stress (HM) in rice seedlings. The results showed that HM caused a marked reduction in seedling height, chlorophyll content (SPAD) and biomass, and activities of catalase (CAT) and ascorbate peroxidase (APX) in leaves and H+-ATPase in roots/leaves, but elevated superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities in leaves with elevated malondialdehyde (MDA) accumulation both in leaves and roots over the control. The best mitigation effect was recorded in HM+GSH+Zn and HM+GSH (addition of GSH+Zn and GSH to HM solution), which greatly alleviated HM-induced growth inhibition and oxidative stress. Compared with HM alone, HM+GSH and HM+GSH+Zn markedly reduced Cr uptake and translocation but not affected Cd concentration; improved H+-ATPase activity and Fe, Zn, Mn uptake and translocation, and repressed MDA accumulation. Meanwhile exogenous GSH and GSH+Zn counteracted HM-induced response of antioxidant enzymes, via suppressing HM-induced dramatic increase of root/leaf SOD and leaf POD activities, and elevating stress-depressed leaf APX and leaf/root CAT activities.  相似文献   

6.
It has been reported that aluminum (Al) toxicity is a major limiting factor for plant growth and production on acidic soils. Boron (B) is indispensable micronutrient for normal growth of higher plants, and its addition could alleviate Al toxicity. The rape seedlings were grown under three B (0.25, 25 and 500 μM) and two Al concentrations [0 (?Al) and 100 μM (+Al) as AlCl3·6H2O]. The results indicated that Al stress severely hampered root elongation and root activity at 0.25 μM B while the normal (25 μM) and excess (500 μM) B improved the biomass of rape seedlings under Al exposure. Additionally, normal and excess B treatment reduced accumulation of Al in the roots and leaves under Al toxicity, which was also confirmed by hematoxylin with light staining. This indicates that both normal and excess B could alleviate Al toxicity. Furthermore, it also decreased the contents of malondialdehyde and soluble protein under Al toxicity. Likewise, superoxide dismutase activity (SOD) improved by 97.82 and 131.96% in the roots, and 168 and 119.88% in the leaves at 25 and 500 µM B, respectively, while the peroxidase and catalase activities dropped as a result of Al stress. The study results demonstrated that appropriate B application is necessary to avoid the harmful consequences of Al toxicity in rape seedlings.  相似文献   

7.
Heavy metals are generally known to induce oxidative stress, but are rarely strategically studied in an embracive manner, taking into account interplay between their various effects. Furthermore, although metals in the environment are present in mixtures and interact with each other, their combined effects to organisms have been much less studied in comparison to individual effects. Here, we present a complete comprehensive study of cadmium (Cd)/copper (Cu) oxidative stress interactions in Nicotiana tabacum seedlings and adult plants. Plants were treated with Cd (10 and 15 μM), Cu (2.5 and 5 μM) and their combinations; seedlings during 1 month period and adult plants during the period of 7 days. Metal accumulation measurements showed that Cd and Cu influence each other uptake, with Cu reducing Cd translocation to shoots. PCA analysis showed that MDA and carbonyls, biomarkers of oxidative stress, as well as ascorbate peroxidase activity, highly correlated across tissues and with Cd content. Majority of toxic effects were caused by Cd-alone, while addition of Cu often resulted in damage alleviation. However, mixture of high concentrations of both Cd and Cu induced most adverse effects. In conclusion, our results indicate that Cu in lower concentration has antagonistic effect to Cd toxicity, while in higher concentration these metals interact additively in tobacco.  相似文献   

8.
The evaluation of thiol metabolism in plant adaptation to relevant levels of cadmium stress is important for understanding the real importance of phytochelatins and related thiols in stress coping. The present work was designed to study the process of stress adaptation in roots of Pisum sativum L. plants during an exposure to different cadmium concentrations, ranging from more realistic exposures to those usually employed in PC studies. The balance between individual PCs and their homologous hPCs in constitutive thiol pools and root growth was also accessed. Roots of intact plants were submitted to 1, 3, 30, 60 or 120 μM Cd and harvested after 1, 3, 6 and 9 days after exposure. Growth parameters and root tissue cadmium accumulation were analysed. High-performance liquid chromatography (HPLC) with fluorescence detection was used due to its high sensitivity. Root growth was only affected in concentrations higher than 30 μM Cd, but the presence of low cadmium concentrations induced significant alterations in constitutive thiols and triggered the synthesis of PCs and hPCs, bearing two to four olygomeric repeats. Increasing Cd stress levels were generally associated with higher polythiol production; however, with the time-course of the experiments, higher degrees of toxicity were associated with a reduction in thiol production. This behaviour was attributed to the Cys and GSH depletion, which limited polythiol synthesis, as well as root growth. In tolerable concentrations, the rate of root length recovery matched the increase in PC and hPC synthesis. In higher concentrations (60 and 120 μM), the reduction in non-protein polythiol synthesis was associated with higher Cd toxicity, leading to a severe growth reduction. The synthesis of hPCs seemed to have a reduced importance in tolerance; however, their production was stimulated when the GSH deficit was higher. Our results suggest that the reductions in PC levels, observed in higher degrees of stress, were not related to the activation of other tolerance mechanisms but were instead associated with the high metabolic cost of this thiol-based tolerance mechanism.  相似文献   

9.
The objective of this study was to investigate the effect of selenium (Se) supply (0, control; 2.5, 5, 10, or 20 μM) on cucumber (Cucumis sativus L.) cv. Polan F1 plants grown under short-term low temperature stress. About 14–16 day-old seedlings, grown at an optimal temperature (25/20°C; day/night), were exposed to short-term chilling stress with a day/night temperature of 10°C/5°C for 24 h, for a further 24 h at 20°C/15°C, and then transferred to 25/20°C (re-warming) for 7 days. Se did not affect the fresh weight (FW) of plants at a concentration of 2.5–10 μM, but in the presence of 20 μM Se, the biomass of shoots significantly decreased. The contents of chlorophylls and carotenoids witnessed no significant change after Se supplementation. Compared with the control, the Se-treated plants showed an increase of proline content in leaves, once after chilling and again after 7 days of re-warming. However, proline levels were much higher immediately after chilling than after re-warming. The malondialdehyde (MDA) content in the root of plants treated with 2.5–10 μM Se decreased directly after stress. This was in comparison with the plants grown without Se, whereas it increased in roots and leaves of plants exposed to 20 μM Se. Seven days later, the MDA level in the root of plants grown in the presence of Se was still lower than those of plants not treated with Se and generally witnessed no significant change in leaves. Although Se at concentrations of 2.5–10 μM modified the physiological response of cucumber to short-term chilling stress, causing an increase in proline content in leaves and diminishing lipid peroxidation in roots, the resistance of plants to low temperature was not clearly enhanced, as concluded on the basis of FW and photosynthetic pigments accumulation.  相似文献   

10.
We have investigated the influence of silicon on higher zinc concentration reducing the growth of aboveground parts by ca 50 % in young maize plants (hybrid Novania) grown in hydroponics. Eight different treatments were used: control, Zn (800 μM ZnSO4·7H2O), Si1/Si2.5/Si5 (1/2.5/5 mM Na2SiO7) and Zn+Si (combination of zinc and all silicon concentrations). The concentration of Zn and Si and their distribution in plants was determined. The growth parameters (length of primary seminal root, leaf area of first and second leaves, fresh and dry weight of below- and above-ground plant parts) of plants grown in various Zn+Si treatments were significantly decreased in comparison to all other treatments. Increasing concentration of Si in combination with Zn treatment and selected hybrid (Novania) resulted in increased physiological stress in comparison to Zn treatment. However, roots and shoots of all Zn+Si treated plants contained significantly lower amount of Zn than Zn treatment. The Si concentration in roots was the same in Si and Zn+Si plants. In general, higher amount of Si was observed in shoots than in roots of Si1- and Si2.5-treated plants and opposite was observed in Si5-treated plants. In spite of significantly decreased root and shoot accumulation of Zn in the presence of Si, no positive effect of Si on Zn toxicity in young maize plants under experimental conditions used in this work and used maize hybrid was observed.  相似文献   

11.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

12.
The aim of the present study was to examine the effects of exogenous selenium (Se) supplementation on the tolerance of pepper (Capsicum annuum L.) cv. Suryamukhi Cluster plants to cadmium (Cd) phytotoxicity at the reproductive stage. The pepper plants were supplied with Cd (0, 0.25 or 0.50 mM) and Se (0, 3 or 7 μM), individually or simultaneously, three times during the experiment. The obtained results show that Cd had deleterious effect on pepper plants at the reproductive stage. However, Se supplementation improved the flower number, fruit number and fruit diameter in plants exposed to 0.50 mM Cd. Moreover, both Se concentrations used in 0.25 mM Cd-treated plants and 3 μM Se in 0.50 mM Cd-treated plants enhanced fruit yield per plant as compared to Cd-alone treatment. The chlorophyll concentrations significantly increased in the fruits of Cd-exposed plants after Se addition. However, Se supplementation reduced total carotenoids and total soluble solid (TSS) concentrations in the pepper fruits exposed to Cd. Selenium also generally enhanced the total antioxidant activity of pepper fruits subjected to Cd. Both Se concentrations used increased mean productivity (MP), stress tolerance index (STI) and yield stability index (YSI) in plants grown in the medium containing 0.25 mM Cd. At low concentration (3 μM), Se significantly increased geometric mean productivity (GMP), STI and YSI of plant exposed to 0.50 mM Cd. The highest Cd concentration in the fruits was achieved at 0.50 mM Cd and Se application significantly reduced Cd accumulation in the Cd-exposed plants. Our results indicate that application of Se can alleviate Cd toxicity in pepper plants at the reproductive stage by restricting Cd accumulation in fruits, enhancing their antioxidant activity and thus improving the reproductive and stress tolerance parameters.  相似文献   

13.
Pea plants were exposed to 0, 20, 50, and 100 µM chromium [Cr(VI)] to investigate oxidative stress in isolated chloroplasts. Leaf area and biomass accumulation were significantly reduced at higher Cr supply. Generation of superoxide, hydrogen peroxide, and ·OH radical generation was enhanced in the chloroplasts isolated from Cr-exposed pea plants. Cr(VI) significantly reduced F v/F m ratio of chlorophyll (Chl) fluorescence, Chl content, and whole chain electron transport rate. Superoxide dismutase (SOD) activity increased at lower Cr supply while it decreased at higher Cr supply. Ascorbate peroxidase (APX) was found to be most sensitive to Cr stress. Monodehydroascorbate reductase activity remained higher at 20 and 50 µM Cr but decreased at 100 µM Cr. Increased activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in the isolated chloroplasts were observed during the initial 3 days of Cr exposure of pea plants. Activities of DHAR and GR were increased up to day 3 only. Ascorbate and glutathione (GSH) pools showed similar decrease that was more evident in the GSH pool as the duration of Cr treatment increased. Observed changes in reactive oxygen species concentration, photosynthetic characteristics, and antioxidant system indicate that chloroplasts in Cr-exposed pea plants are an important target of oxidative stress.  相似文献   

14.
The objective of this study is to elucidate the roles of silicon (Si) in enhancing tolerance to excess zinc (Zn) in two contrasting rice (Oryza sativa L.) cultivars: i.e. cv. TY-167 (Zn-resistant) and cv. FYY-326 (Zn-sensitive). Root morphology, antioxidant defense reactions and lipid peroxidation, and histochemical staining were examined in rice plants grown in the nutrient solutions with normal (0.15 μM) and high (2 mM) Zn supply, without or with 1.5 mM Si. Significant inhibitory effects of high Zn treatment on plant growth were observed. Total root length (TRL), total root surface area (TRSA) and total root tip amount (TRTA) of both cultivars were decreased significantly in plants treated with high Zn, whereas these root parameters were significantly increased when Zn-stressed plants were supplied with 1.5 mM Si. Supply of Si also significantly decreased Zn concentration in shoots of both cultivars, indicating lower root-to-shoot translocation of Zn. Moreover, superoxide dismutase (SOD), catalase (CAT), and asorbate peroxidase (APX) activities were increased, whereas malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations were decreased in Si-supplied plants of both Zn-sensitive and Zn-resistant rice cultivars exposed to Zn stress. These alleviative effects of Si, further confirmed by the histochemical staining methods, were more prominent in the Zn-resistant cultivar than in the Zn-sensitive one. Taken together, all these results suggest that Si-mediated alleviation of Zn toxicity is mainly attributed to Si-mediated antioxidant defense capacity and membrane integrity. The possible role of Si in reduction of root-to-shoot translocation of Zn can also be considered.  相似文献   

15.

Background and aims

Interactions between Cd and Zn occur in soils and plants but are inconsistent. This study examined how Cd/Zn interactions influence the growth of Carpobrotus rossii (Haw.) and the accumulation of Cd and Zn in plants.

Methods

Plants were grown in nutrient solutions containing 5–100 μM Zn and 0, 5 or 15 μM Cd. Plant growth and tissue concentrations were measured, and the speciation of Zn within the plant tissues determined using synchrotron-based X-ray absorption spectroscopy.

Results

There was an additive negative interaction between Cd and Zn on root growth. Only the highest level of Zn (100 μM) decreased Cd concentrations in root and shoot tissues (by 40–64%), whilst 100 μM Zn enhanced Cd translocation at 5 μM Cd but decreased it at 15 μM Cd. In contrast, both 5 and 15 μM Cd decreased Zn concentrations in root and shoot tissues but increased Zn translocation by 30–90%. This interaction was not associated with changes in Zn speciation within the plants, with most Zn associated with oxalate (48–87%).

Conclusions

The presence of Zn and Cd resulted in an additive negative effect on root growth, but an antagonistic pattern in their accumulation in shoots of C. rossii.
  相似文献   

16.
High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F? in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F? concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F?. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F? promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F? had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.  相似文献   

17.
Oxidative stress caused by mercury (Hg) was investigated in Pfaffia glomerata plantlets grown in nutrient solution using sand as substrate. Thirty-day-old acclimated plants were treated for 9 days with four Hg levels (0, 1, 25 and 50 μM) in the substrate. Parameters such as growth, tissue Hg concentration, toxicity indicators (δ-aminolevulinic acid dehidratase, δ-ALA-D, activity), oxidative damage markers (TBARS, lipid peroxidation, and H2O2 concentration) and enzymatic (superoxide dismutase, SOD, catalase, CAT, and ascorbate peroxidase, APX) and non-enzymatic (non-protein thiols, NPSH, ascorbic acid, AsA, and proline concentration) antioxidants were investigated. Tissue Hg concentration increased with Hg levels. Root and shoot fresh weight and δ-ALA-D activity were significantly decreased at 50 μM Hg, and chlorophyll and carotenoid concentration were not affected. Shoot H2O2 concentration increased curvilinearly with Hg levels, whereas lipid peroxidation increased at 25 and 50 μM Hg, respectively, in roots and shoots. SOD activity showed a straight correlation with H2O2 concentration, whereas CAT activity increased only in shoots at 1 and 50 μM Hg. Shoot APX activity was either decreased at 1 μM Hg or increased at 50 μM Hg. Conversely, root APX activity was only increased at 1 μM Hg. In general, AsA, NPSH and proline concentrations increased upon addition of Hg, with the exception of proline in roots, which decreased. These changes in enzymatic and non-enzymatic antioxidants had a significant protective effect on P. glomerata plantlets under mild Hg-stressed conditions.  相似文献   

18.
The fragmentary information on phosphorus (P) × zinc (Zn) interactions in plants warrants further study, particularly in plants known for their high P and Zn requirements, such as cotton (Gossypium hirsutum L.). The objective of this study was to investigate the effect of P × Zn interactions in a modern cultivar of cotton grown hydroponically. Biomass, mineral nutrition and photosynthetic parameters were monitored in plants receiving contrasting combinations of P and Zn supply. Root biomass, length and surface area were similar in plants with low P and/or low Zn supply to those in plants grown with high P and high Zn supply, reflecting an increased root/shoot biomass quotient when plants lack sufficient P or Zn for growth. Increasing P supply and reducing Zn supply increased shoot P concentrations, whilst shoot Zn concentrations were influenced largely by Zn supply. A balanced P × Zn supply (4 mM P × 4 μM Zn) enabled greatest biomass accumulation, while an imbalanced supply of these nutrients led to Zn deficiency, P toxicity or Zn toxicity. Net photosynthetic rate, stomatal conductance, transpiration rate and instantaneous carboxylation efficiency increased as P or Zn supply increased. Although increasing P supply reduced the P‐use efficiency in photosynthesis (PUEP) and increasing Zn supply reduced the Zn‐use efficiency in photosynthesis (ZnUEP), increasing Zn supply at a given P supply increased PUEP and increasing P supply at a given Zn supply increased ZnUEP. These results suggest that agricultural management strategies should seek for balanced mineral nutrition to optimize yields and resource‐use efficiencies.  相似文献   

19.
The protective effect of β-estradiol (E) application against heavy metal (HM) toxicity in lentil (Lens culinaris) seedlings was investigated. Seeds were treated with distilled water (control) or aqueous solutions of 100 μM CdCl2, 200 μM CuCl2 and 1 μM E singly or in combinations (1 μM E+100 μM CdCl2 and 1 μM E+200 μM CuCl2). HM treatments resulted in increase in the activities of antioxidative enzymes, including superoxide dismutase (SOD), catalase (CAT), guaicol peroxidase and ascorbate peroxidase. In a similar manner, Cd and Cu affected significantly oxidative injury indicators measured as electrolyte leakage (electrical conductivity of germination medium), lipoxygenase (LOX) activity and contents of malondialdehyde (MDA; lipoperoxidation marker), carbonyl groups (protein oxidation marker) and hydrogen peroxide (a reactive oxygen species). However, E was effective in reducing HM-induced toxicity. The steroid (1) alleviated HM-induced increase in the electrolyte leakage, LOX activity and contents of MDA, carbonyl and H2O2 and (2) improved the activities of SOD and CAT, but not the peroxidase ones, as compared to treatments with HM singly. In addition, E application prevented HM-induced decrease in dry weight production, but did not reduce the accumulation of Cd and Cu in tissues. Results of the present study suggest that E is able to protect lentil from HM-induced oxidative damage most likely by avoidance of H2O2 generation and improving antioxidative enzyme activities and, thereby, decreasing oxidative stress injury, but not by reducing Cd and Cu uptake.  相似文献   

20.
The effects of different concentrations of selenite (2–30 μM) and selenate (2–60 μM) on biomass production, leaf area, and concentrations of photosynthetic pigments in lettuce plants were investigated. On the basis of the obtained results, the threshold of toxicity for the selenite and selenate has been designated. The toxicity thresholds for selenite and selenate were determined at concentrations of 15 and 20 μM, respectively. Next, four selenium (Se) concentrations (2, 4, 6 or 15 μM), below or near the toxicity boundary, have been selected for the lettuce biofortification experiment. In the biofortified plants, the oxidant status (levels of lipid peroxidation and H2O2 concentrations), as well as Se and sulphur (S) accumulation were analysed. In the edible parts of the lettuce, the Se concentration was higher for selenate presence compared to selenite; however, this difference was not as obvious as it was noted in the case of the roots, where selenite application caused the high accumulation of Se. An application of 15 μM Se as selenite caused a decline in the biomass and an intensification of prooxidative processes in the plant’s tissues and as toxic should be excluded from further biofortification experiments. These results indicate that an application of either selenate or selenite to the nutrient solution at concentrations below 15 μM can be used for biofortification of lettuce with Se, evoking better plant growth and not inducing significant changes in the oxidant status, the concentration of assimilation pigments and S accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号