首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoremediation is an emerging technology that uses green plants (living machines) for removal of contaminants of concern (COC). These plant species have the potential to remove the COC, thereby restoring the original condition of soil or water environment. The present study focuses on assessing the heavy metals (COC) present in the contaminated water bodies of Ranchi city, Jharkhand, India. Phytoremedial potential of three plant species: Typha latifolia, Eichornia crassipes and Monochoria hastata were assessed in the present study. Heterogenous accumulation of metals was found in the three plant species. It was observed that the ratio of heavy metal concentration was different in different parts, i.e., shoots and roots. Positive results were also obtained for translocation factor of all species with minimum of 0.10 and maximum of 1. It was found experimentally that M. hastata has the maximum BFC for root as 4.32 and shoot as 2.70 (for Manganese). For T. latifolia, BCF of maximum was observed for root (163.5) and respective shoot 86.46 (for Iron), followed by 7.3 and 5.8 for root and shoot (for Manganese) respectively. E. crassipes was found to possess a maximum BCF of 278.6 (for Manganese and 151 (for Iron) and shoot as 142 (for Manganese) and 36.13 (for Iron).  相似文献   

2.
Abstract

Phytoremediation by aquatic macrophytes is a promising technology with higher efficiency and no energy consumption. For this purpose, two macrophytes (Pistia stratiotes, Eichhornia crassipes), and an alga (Oedogonium sp.) were used to treat textile effluents rich in COD, BOD, dyes, and heavy metals (Pb, Fe, Cd, Cu). The aim of the study was to focus on comparative phytoremediation potential of these species by their metal removal capability. During 7?days experiment (day 0–day 6), the results showed that Oedogonium sp. was the best for COD removal and decolorization. Eichhornia crassipes was the best for BOD and heavy metal removal and proves more efficient than Pistia stratiotes and Oedogonium sp. However, Pistia stratiotes was found to accumulate more concentrations of Pb and Fe than Eichhornia stratiotes.  相似文献   

3.
Positive root response to metals may enhance metal accumulation for greater requirement in hyperaccumulators. The effects of spatially heterogeneous Zn/Cd addition on root allocation, metal accumulation, and growth of the Zn/Cd hyperaccumulator Sedum alfredii were assessed in a pot experiment. Young shoots of S. alfredii were grown with or without supplied Zn/Cd. Two concentrations were used of each metal, and each metal concentration had one homogeneous and two heterogeneous treatments. Growth increased by 1.6–3.2 times with the increasing overall dose of Zn/Cd addition, and shoot biomass was positively correlated with shoot Zn/Cd concentration (P?<?0.001). In all heterogeneous treatments, the plants consistently allocated approximately 90% of root biomass to the metal-enriched patches, and shoot Zn/Cd contents were greater than or similar to those in the homogeneous treatment at each metal concentration. Plants in the control treatment showed symptoms of Zn deficiency, although their shoots had Zn concentrations 100-fold higher than the critical deficiency value for most plants. We conclude that S. alfredii has evolved root foraging mechanisms associated with its greater requirements for Zn/Cd. These results could have important implications both for phytoremediation and for investigation of positive role of Cd in higher plants.  相似文献   

4.
In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg?1), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.  相似文献   

5.
In order to compare the petroleum tolerance and phytoremediation ability of a native grass, Agropyron desertorum (desert Wheatgrass) with Cynodon spp. (Bermuda grass) in a petroleum hydrocarbon-contaminated soil, a 7-month greenhouse experiment was performed. There were 4 soil treatments with 0% (uncontaminated soil), 2%, 4%, and 12% (woil/wsoil) petroleum concentration. Parameters including shoot and root fresh weight and dry weight, root penetration depth and root density depth, soil respiration, and total petroleum hydrocarbons (TPH) degradation were measured during and after experiments. The results showed an increase in shoot fresh weight of A. desertorum in soil polluted with 2% petroleum sludge compared to the uncontaminated soil, whereas the growth of Bermuda grass significantly decreased in corresponding treatment. Root growth of A. desertorum was decreased in 2% and 4% petroleum sludge, whereas it was increased in Bermuda grass species. Overall, root fresh weight of Bermuda grass was higher than that of A. desertorum in all treatments. Significant increase in microorganisms' activity was observed in the presence of petroleum sludge and plants in soil compared with uncontaminated soil without plants, and the highest soil respiration (37.6 mg C-CO2/kg soil day) has been observed in the rhizosphere of Bermuda grass in treatment with 12% petroleum sludge. Plants had a significant role in the degradation of soil contaminants as TPH degradation in planted soils was significantly higher than that in unplanted soil (TPH degradation (%) was 30.4 and 38.9 in A. desertorum and Bermuda grass, respectively, whereas it was just 13.3 in unplanted soil). The rhizosphere of Bermuda grass had significantly less residual TPHs compared to A. desertorum. The results indicated that both Cynodon spp. and A. desertorum had a peculiar tolerance to petroleum pollution. Therefore, as Bermuda grass has already been suggested to be a typical and efficient species for phytoremediating petroleum-contaminated sites, A. desertorum may also prove to be a suitable native alternative.  相似文献   

6.
The popular ornamental plant Calendula officinalis L was studied for its potential application in the phytoremediation of cadmium (Cd)-contaminated soils. Enhancements to the Cd accumulation by the application of sodium dodecyl sulfate (SDS), ethylenediaminetriacetic acid (EDTA) and ethylenegluatarotriacetic acid (EGTA) to the soil were investigated. Under these chemically enhanced treatments, EDTA was observed to be toxic to the plants leading to retarded growth. However, the application of SDS and/or EGTA was shown to result in significantly increased plant biomass (p < 0.05). Most of the chemical treatments resulted in increases to the shoot and root Cd concentrations, with the root Cd concentration being consistently higher than that shoot Cd concentration. Almost all of the investigated chemical treatments containing SDS or and EGTA were shown to lead to an increase in the total Cd content in the plants (p < 0.05). The application of EGTA alone led to an observed total Cd increase of up to 217%. This investigation revealed considerable efficiency of chemical enhancement and correspondingly increased potential of Calendula officinalis L. for applications of phytoremediation of Cd-contaminated sites.  相似文献   

7.
The combined use of plants and bacteria is a promising approach for the remediation of polluted soil. In the current study, the potential of bacterial endophytes in partnership with Leptochloa fusca (L.) Kunth was evaluated for the remediation of uranium (U)- and lead (Pb)-contaminated soil. L. fusca was vegetated in contaminated soil and inoculated with three different endophytic bacterial strains, Pantoea stewartii ASI11, Enterobacter sp. HU38, and Microbacterium arborescens HU33, individually as well as in combination. The results showed that the L. fusca can grow in the contaminated soil. Bacterial inoculation improved plant growth and phytoremediation capacity: this manifested in the form of a 22–51% increase in root length, 25–62% increase in shoot height, 10–21% increase in chlorophyll content, and 17–59% more plant biomass in U- and Pb-contaminated soils as compared to plants without bacterial inoculation. Although L. fusca plants showed potential to accumulate U and Pb in their root and shoot on their own, bacterial consortia further enhanced metal uptake capacity by 53–88% for U and 58–97% for Pb. Our results indicate that the combination of L. fusca and endophytic bacterial consortia can effectively be used for the phytostabilization of both U- and Pb-contaminated soils.  相似文献   

8.
This study investigated two industrial by-products – red mud (RM) and its mixture with phosphogypsum (RMG), as amendments in an As(5+)-contaminated soil from a gold mining area in Brazil in order to grow three plant species: Brachiaria decumbens, Crotalaria spectabilis, and Stylosanthes cv. Campo Grande. These amendments were applied to reach a soil pH of 6.0. Using RM and RMG increased shoot dry matter (SDM) and root dry matter (RDM) of most plants, with RMG being more effective. Adding RMG increased the SDM of Brachiaria and Crotalaria by 18 and 25% and the RDM by 25 and 12%, respectively. Stylosanthes was sensitive to As toxicity and grew poorly in all treatments. Arsenic concentration in shoots of Brachiaria and Crotalaria decreased by 26% with the use of RMG while As in roots reduced by 11 and 30%, respectively. Also, the activities of the plant oxidative stress enzymes varied following treatments with the by-products. The plants grew in the As-contaminated soil from the gold mining area. Thus, they might be employed for phytoremediation purposes, especially with the use of RMG due to its potential advantage in terms of nutrient supply (Ca2+ and SO42? from phosphogypsum).  相似文献   

9.
Abstract

Using biodegradable chelators to assist in phytoextraction may be an effective approach to enhance the heavy-metal remediation efficiencies of plants. A pot experiment was conducted to investigate the effects of ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) on the growth of the arsenic (As) hyperaccumulator Pteris vittata L., its arsenic (As), cadmium (Cd), and lead (Pb) uptake and accumulation, and soil microbial responses in multi-metal(loid)-contaminated soil. The addition of 2.5-mmol kg?1 OA (OA-2.5) produced 26.7 and 14.9% more rhizoid and shoot biomass, respectively compared with the control, while EDDS and CA treatments significantly inhibited plant growth. The As accumulation in plants after the OA-2.5 treatment increased by 44.2% and the Cd and Pb accumulation in plants after a 1-mmol kg?1 EDDS treatment increased by 24.5 and 19.6%, respectively. Soil urease enzyme activities in OA-2.5 treatment were significantly greater than those in the control and other chelator treatments (p?<?0.05). A PCR–denatured gradient gel electrophoresis analysis revealed that with the addition of EDDS, CA and OA enhanced soil microbial diversity. It was concluded that the addition of OA-2.5 was suitable for facilitating phytoremediation of soil As and did not have negative effects on the microbial community.  相似文献   

10.
Wastewater flowing in streams and nallahs across India carries several trace metals, including metalloid arsenic (As), which are considered serious environmental contaminants due to their toxicity, and recalcitrant nature. In this study, we determined the phytoremediation of As by Eichhornia crassipes (Mart.) Solms either alone or in association with plant growth-promoting rhizobacteria. Pseudomonas and Azotobacter inoculation to E. crassipes resulted in enhanced As removal compared to uninoculated control. Co-inoculation with a consortium of Pseudomonas, Azotobacter, Azospirillum, Actinomyces, and Bacillus resulted in a higher As (p < 0.05) phytoaccumulation efficiency. P. aeruginosa strain jogii was found particularly effective in augmenting As removal by E. crassipes. Our findings indicate that the synergistic association of E. crassipes and various rhizobacteria is an effective strategy to enhance removal of As and thus may be utilized as an efficient biological alternative for the removal of this metalloid from wastewaters.  相似文献   

11.
This study aimed to evaluate the pH, phosphate, and nitrate in the process of arsenic absorption by Eichhornia crassipes (water hyacinth), using the surface response methodology, in order to optimize the process. The plants were exposed to a concentration of arsenic of 0.5 mg L?1 (NaAsO2) over a period of 10 days. The results indicated optimal levels for the absorption of arsenic by E. crassipes at pH equal to 7.5, absence of phosphate, and minimum nitrate level of 0.0887 mmol L?1. For the tested concentration, E. crassipes was able to accumulate 498.4 mg kg?1 of As (dry base) in its plant tissue and to reduce 83% of the initial concentration present in the aqueous medium where it was cultivated. The concentration of phosphorus in solution linearly increased the phosphorus content in the plants and negatively influenced the absorption of arsenic. The concentration of 0.5 mg L?1 of As did not significantly affect the relative growth rate (RGR) and the tolerance index (TI). 94% of As (III) initially solubilized in water was converted by the end of the experiment period into As (V). The water hyacinth was important in the phytoremediation of arsenic when cultivated under optimal conditions for its removal.  相似文献   

12.
Plant growth promoting bacteria (PGPB) enhanced phytoremediation (PEP) is an attractive remedial strategy for the remediation of polycyclic aromatic hydrocarbon (PAH) and heavy metal (HM) contaminated sites. The effect of PGPB; Pseudomonas putida UW4 inoculation on the phytoremediation efficiency of Medicago sativa, Festuca arundinacea, Lolium perenne, and mixed plants (L. perenne and F. arundinacea) was assessed. This involved two contaminant treatments; “PAH” (phenanthrene; 300?mg·kg?1, fluoranthene; 200?mg·kg?1, and benzo[a]pyrene; 5?mg·kg?1) and “PAH?+?HM” (‘PAH’ treatments +100?mg of Pb/kg). PGPB inoculation significantly enhanced root biomass yield of F. arundinacea in PAH treatment, and the mixed plant shoot biomass and L. perenne root biomass yields of the PAH?+?HM treatment. PGPB significantly enhanced dissipation of phenanthrene and fluoranthene for M. sativa-PAH?+?PGPB treatment and fluoranthene for F. arundinacea-PAH?+?HM?+?PGPB treatment. In others, PGPB inoculation either had no impact or inhibited PAH dissipation. PAH dissipation for the single and mixed plant treatments with PGPB inoculation were not different. The efficiency of PEP is dependent on different factors such as PGPB inoculum biomass, plant species, plant–microbe specificity and type of contaminants. Exploiting PEP technology would require proper understanding of plant tolerance and growth promoting mechanisms, and rhizosphere activities.  相似文献   

13.
Long day photoperiod treatments given to Dancy and Clementine tangerines (Citrus reticulata Blanco.), the Mineola tangelo (C. parodisi Macf. × C. reticulata Blanco.) and the Rubideaux trifoliate (Poncirus trifoliata (L.) Raf.) produced 1.5 to 2.5 times the stem area, total linear growth and number of branches compared to short day treatments. Growing shoot tips were snbjected lo etectrophoretic analyses of tbe isoenzymic composition of esterases, teucine aminopeptidases, peroxidases and amylases. Differences were observed in the number and activity of the isoenzymes between the sbort and the long day treated plants of the three Citrus species aiid Hnbideaux trifoliate orange. The possible significance of tbese differences is discnssed in relation to Ihe growth in response to the photoperiodic treatments.  相似文献   

14.
This study evaluated Cd and Pb accumulation by castor bean (Ricinus communis cv. Guarany) plants grown in nutrient solution, aiming to assess the plant’s ability and tolerance to grow in Cd- and Pb-contaminated solutions for phytoremediation purposes. The plants were grown in individual pots containing Hoagland and Arnon’s nutrient solution with increasing concentrations of Cd and Pb. The production of root and shoot dry matter and their contents of Cd, Pb, Ca, Mg, Cu, Fe, Mn, and Zn were evaluated in order to calculate the translocation and bioaccumulation factors, as well as toxicity of Cd and Pb. Cadmium caused severe symptoms of phytotoxicity in the plant’s root and shoot, but no adverse effect was observed for Pb. Castor bean is an appropriate plant to be used as indicator plant for Cd and tolerante for Pb in contaminated solution and it can be potentially used for phytoremediation of contaminated areas.  相似文献   

15.
Pot experiments were carried out to examine the responses of growth, physiological properties, copper (Cu) absorption and translocation in two bamboo species, Phyllostachys auresulcata ‘Spectabilis’ and Pleioblastus chino ‘Hisauchii’ Two-year old plants with similar size were exposed to excess Cu treatments, in order to demonstrate their Cu tolerance and potential ability of phytoremediation under Cu-polluted soil as biofuel feedstock. Pots were irrigated with aqueous solutions of Cu in concentrations of 500, 1000 and 2000 mg CuSO4·5H2O kg?1, against the control (tap water). Plant growth, chlorophyll contents, photosynthesis rate, malondialdehyde (MDA) content, Cu concentrations in leave, stem and root, and Cu contents in shoot per pot were measured after transplanted plants were grown under excess Cu treatments for 60 days. Two bamboo species had different responses to tolerance and allocation of supplied Cu. As Cu treatments rose, the percentage of senescent shoot and MDA content increased, and the chlorophyll content and photosynthetic capacity decreased. Such changes in Hisauchii were more obvious than in Spectabilis. However, number of emerged shoots did not differ between the two species across four Cu treatments. In the efficiency of decontamination, Hisauchii was more effective than Spectabilis, since either the Cu concentrations in leaves, stems and roots or Cu contents in shoot per pot in Cu treatments from 500 to 2000 mg?kg?1 were higher in Hisauchii than in Spectabilis It is suggested that the potential capability of absorbing Cu might cause the different response to cu stress between the two bamboo species. Both bamboo species can be considered to exhibit enough potential to develop in Cu-polluted areas of China as bioenergy resources and phytoremediation plants.  相似文献   

16.
A natural wetland in Mexico City Metropolitan Area is one of the main suppliers of crops and flowers, and in consequence its canals hold a high concentration of organochlorine (OC) and organophosphorus (OP) pesticides. There is also an extensive population of water hyacinth (Eichhornia crassipes), which is considered a plague; but literature suggests water hyacinth may be used as a phytoremediator. This study demonstrates bioaccumulation difference for the OC in vivo suggesting their bioaccumulation is ruled by their log Kow, while all the OP showed bioaccumulation regardless of their log Kow. The higher bioaccumulation factors (BAF) of the accumulated OC pesticides cannot be explained by their log Kow, suggesting that the OC pesticides may also be transported passively into the plant. Translocation ratios showed that water hyacinth is an accumulating plant with phytoremediation potential for all organophosphorus pesticides studied and some organochlorine pesticides. An equation for free water surface wetlands with floating macrophytes, commonly used for the construction of water-cleaning wetlands, showed removal of the pesticides by the wetland with room for improvement with appropriate management.  相似文献   

17.
The presence of veterinary and human antibiotics in soil and surface water is an emerging environmental concern. The current study was aimed at evaluating the potential of using vetiver grass as a phytoremediation agent in removing Tetracycline (TC) from aqueous media. The study determined uptake, translocation, and transformation of TC in vetiver grass as function of initial antibiotic concentrations and exposure time. Vetiver plants were grown for 60 days in a greenhouse in TC contaminated hydroponic system. Preliminary results show that complete removal of tetracycline occurred within 40 days in all TC treatments. Initial concentrations of TC had significant effect (p < 0.0001) on the kinetics of removal. Tetracycline was detected in the root as well as shoot tissues, confirming uptake and root-to-shoot translocation. Liquid-chromatography-tandem-mass-spectrometry analysis of plant tissue samples suggest presence of metabolites of TC in both root and shoot tissues of vetiver grass. The current data is encouraging and is expected to aid in developing a cost-effective, in-situ phytoremediation technique to remove TC group of antibiotics from wastewater.  相似文献   

18.
This study provides data on the phylogeny, taxonomy and distribution of 14 known and five new species of the Neotropical genus Veturius Kaup (Proculini), belonging to various subgenera and species groups: V. (Veturius) latissimus n. sp. (Colombia, Central Andes) and V. (V.) calimanus n. sp. (Pacific slope of the Occidental Cordillera) are separated from V. (V.) caquetaensis Boucher, 1988, which seems restricted to the Amazonian slope of the Oriental Cordillera (Caquetá, Putumayo); V. (V.) sinuatomarginatus Luederwaldt, 1941 (Costa Rica), n. syn. of V. sinuatocollis Kuwert, 1890; V. sinuatocollis aculeatus Luederwaldt, 1941 (syntype from Costa Rica); V. (V.) aspina Kuwert, 1898 (located in Occidente of Ecuador, Guayaquil); V. (V.) yahua Boucher, 2006 (located in Occidente of Ecuador, Pichincha and SW Colombia, Nariño); V. (V.) guntheri Kuwert, 1898 (located in Peru, SE Puno and Colombia, W Putumayo); V. (V.) cephalotes (Le Peletier & Serville, 1825) (citation from Guyana); V. (V.) sinuatus (Eschscholtz, 1829) (previous synonymy); V. (V.) libericornis Kuwert, 1891 (located in Peru, Cuzco); V. (V.) lepidus Fonseca, 1999 (revision; located in Colombia, Amazonas, Putumayo and Peru, Loreto); V. (V.) transversus (Dalman, 1817) [syntype; previous synonymy of V. trituberculatus (Eschscholtz, 1829) with V. assimilis (Weber, 1801) and located in Brazil, Mato Grosso]; V. (V.) sinuosus (Drapiez, 1820) (corrected reference for Colombia); V. (Publius) crassus (Smith, 1852) (new syntype); V. (P.) danieli Boucher, 2006 (holotype deposit); V. (P.) vazdemelloi Boucher, n. sp. (Andes of Ecuador, Azuay); V. (Ouayana) unicornis Gravely, 1918 (located in Colombia, E Vaupés); V. (O.) costaianus Boucher, n. sp. (Venezuela, Amazonas, NW Pacaraima Massif); Ticoisthmus Boucher, n. subg., for the species group of V. (O.) laevior (Kaup, 1868), of southern Central America; and V. (T.) brachypterus Boucher, n. sp. (Costa Rica, Sierra Talamanca). Ticoisthmus is considered the sister group of Ouayana. It belongs to the Meso-American low mountain dispersion pattern and demonstrates, especially in the genus Veturius, but also more generally in the Neotropical passalids, the hot-spot characteristics, with diversity and endemism, of the narrow land between the Depression of Nicaragua and the Isthmus of Panama.  相似文献   

19.
Eleven actinobacterial strains were isolated from different plants, lentil (Lens esculentus), chickpea (Cicer arietinum L.), pea (Pisum sativum), faba bean (Vicia faba) and wheat (Triticum vulgare) from Paskerville, South Australia. Isolates were characterized and identified morphologically as well as using 16S ribosomal RNA gene sequencing. Of the actinobacteria tested, 72% produced siderophores, 33% were positive for cyanogens production, and 11% showed phosphate solubility. All isolates had antimicrobial activity against Phytophthora medicaginis, Pythium irregulare and Botrytis cinerea. In a greenhouse experiment, actinobacteria with the highest biocontrol capabilities were tested for their ability to control Phytophthora root rot on chickpea. Both Streptomyces sp. BSA25 and WRA1 successfully suppressed Phytophthora root rot when coinoculated with either Mesorhizobium ciceri WSM1666 or Kaiuroo 3. Streptomyces sp. BSA25 with either rhizobial strain enhanced vegetative growth of root (7–11 fold) and shoot dry weights (2–3 fold) compared to infected control, whereas Streptomyces sp. WRA1 increased root and shoot dry weights by 8- and 4-fold, respectively when inoculated with M. ciceri WSM1666. We suggest that careful selection of actinobacteria should be considered when coinoculated with beneficial microorganisms as plant symbionts.  相似文献   

20.
There was no difference in the direct toxicity of fluvalinate and esfenvalerate to twospotted spider mite (TSSM), Tetranychus urticae Koch. adults. The residual toxicity LC50 of esfenvalerate was lower. Neither pyrethroid was toxic (<10% mortality) to TSSM eggs or adults at their recommended field concentrations. Fluvalinate was twice as toxic (45% mortality) than esfenvalerate to TSSM larvae at 0.01 g.a.i L-1. The toxicity of the pyrethroids to TSSM protonymphs and deutonymphs was similar (16–28% mortality at 0.1 g a.i. L-1). Dispersal from the treated surface was the main response to both pyrethroids by TSSM protonymphs, deutonymphs and adults. Maximum run-off by TSSM adults from fluvalinate and esfenvalerate treated surfaces was found with 0.01 and 0.005 g a.i. L-1 respectively. Spin-down from pyrethroid treated surfaces was positively correlated with concentration. Oviposition was negatively correlated with concentration. Fluvalinate caused greater reductions in oviposition than esfenvalerate. Both pyrethroids reduced TSSM development rate from larval, protonymph and deutonymph stages, but fluvalinate caused larger reductions. Both pyrethroids prevented mating: for ten days oviposition 93% and 98% of offspring were male for esfenvalerate and fluvalinate respectively at 0.1 g a.i. L-1. These findings are discussed with respect to the incidence of pyrethroid induced mite outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号