首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA-binding properties of an antiviral drug, valganciclovir (valcyte) was studied by using emission, absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, and computational studies. The drug bound to calf thymus DNA (ct-DNA) in a groove-binding mode. The calculated binding constant of UV-vis, Ka, is comparable to groove-binding drugs. Competitive fluorimetric studies with Hoechst 33258 showed that valcyte could displace the DNA-bound Hoechst 33258. The drug could not displace intercalated methylene blue from DNA double helix. Furthermore, the induced detectable changes in the CD spectrum of ct-DNA as well as changes in its viscosity confirm the groove-binding mode. In addition, an integrated molecular docking was employed to further investigate the binding interactions between valcyte and calf thymus DNA.  相似文献   

2.
The interaction of calf thymus DNA with nevirapine at physiological pH was studied by using absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, salt effect studies and computational methods. The drug binds to ct-DNA in a groove binding mode, as shown by slight variation in the viscosity of ct-DNA. Furthermore, competitive fluorimetric studies with Hoechst 33258 indicate that nevirapine binds to DNA via groove binding. Moreover, the structure of nevirapine was optimized by DFT calculations and was used for the molecular docking calculations. The molecular docking results suggested that nevirapine prefers to bind on the minor groove of ct-DNA.  相似文献   

3.
The anticancer activity of triamterene on HCT116 and CT26 colon cancer cells lines was investigated. Furthermore, the mechanism of interaction between triamterene and calf thymus DNA (ct-DNA) and also human serum albumin (HSA) was conducted using spectroscopic and molecular docking techniques. In vitro cytotoxicity of triamterene against HCT116 and CT26 cells showed promising anticancer effects with IC50 values of 31.30 and 24.45 μM, respectively. Competitive studies of the triamterene with NR (neutral red) and MB (methylene blue) as intercalator probes showed that triamterene can be replaced by these probes. The viscosity data also confirmed that triamterene binds to calf–thymus DNA through intercalation binding mode. Binding properties of triamterene with HSA in the presence of warfarin and ibuprofen showed that triamterene competes with warfarin for the site I of human serum albumin (HSA). In addition, the binding modes of triamterene with DNA and HSA were verified by molecular docking technique. Abbreviations ct-DNA calf thymus DNA

CV cyclic voltammetry

DNA deoxyribonucleic acid

DPV differential pulse voltammetry

FBS fetal bovine serum

HSA human serum albumin

NR neutral red

MB methylene blue

MTT 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide

Communicated by Ramaswamy H. Sarma  相似文献   


4.
Ni Y  Lin D  Kokot S 《Analytical biochemistry》2006,352(2):231-242
Constant wavelength synchronous fluorescence spectroscopy (CW-SFS), UV-visible absorption spectroscopy, and cyclic and differential pulse voltammetry were applied to investigate the competitive interaction of DNA with the bis(1,10-phenanthroline)copper(II) complex cation ([Cu(phen)(2)](2+)) and a fluorescence probe, neutral red dye (NR), in a tris-hydrogen chloride buffer (pH 7.4). The results show that both the [Cu(phen)(2)](2+)and the NR molecules can intercalate competitively into the DNA double-helix structure. The cyclic voltammetry method showed that both anodic and cathodic currents of [Cu(phen)(2)](2+) decreased on addition of the DNA and the intercalated [Cu(phen)(2)](2+)-DNA complex formed (beta = (4.14 +/- 0.24) x 10(3)). CW-SFS measurements were facilitated by the use of the three-way resolution of the CW-SFS for NR, [Cu(phen)(2)](2+), and NR-DNA. The important constant wavelength (CW) interval, Deltalambda, was shown to vary considerably when optimized (135, 58, and 98 nm for NR, NR-DNA, and [Cu(phen)(2)](2+), respectively). This approach clearly avoided the errors that otherwise would have arisen from the common assumption that Deltalambda is constant. Furthermore, a chemometrics approach, parallel factor analysis (PARAFAC), was applied to resolve the measured three-way CW-SFS data, and the results provided simultaneously the concentration information for the three reaction components, NR, [Cu(phen)(2)](2+), and NR-DNA, for the system at each equilibrium point. The PARAFAC analysis indicated that the intercalation of the [Cu(phen)(2)](2+) molecule into the DNA proceeds by exchanging with the NR probe and can be attributed to two parallel reactions. Comprehensive information was readily obtained; the replacement of the intercalated NR commenced immediately on introduction of [Cu(phen)(2)](2+), approximately 50% of NR was replaced by [Cu(phen)(2)](2+) at a concentration of 0.45 x 10(-5) mol L(-1), and nearly all of the NR was replaced at a [Cu(phen)(2)](2+) concentration of 2.50 x 10(-5) mol L(-1). This work has the potential to improve extraction of information from the fluorescence intercalator displacement (FID) assay.  相似文献   

5.
Some aspects of lead(II) DNA interactions   总被引:1,自引:0,他引:1  
The interaction of Pb(II) ions with calf-thymus DNA was studied by differential pulse polarography, sweep voltammetry, cyclic voltammetry, chromatography on hydroxyapatite and viscosity measurements. Pb(II) ions may interact with nucleic acid via phosphate groups causing some stabilization of the DNA structure. However, the more specific interaction occurs with nucleic bases. The latter interaction destabilizes the nucleic acid structure and leads to inter- and intra-chain binding.  相似文献   

6.
As part of a systematic study of the effects of phytochemicals beyond antioxidation on cancer prevention, we investigated whether naringenin (NR), a citrus flavonoid, stimulates DNA repair following oxidative damage in LNCaP human prostate cancer cells. The 8-hydroxydeoxyguanosine (8-OH-dG) to deoxyguanosine (dG) ratio was measured after cells were treated with 200 micromol/L of ferrous sulfate in serum-free medium followed by NR exposure for 24 h in growth medium. The results demonstrated that exposure to 10-80 micromol/L of NR led to a significant decrease in the ratio of 8-OH-dG to 10(6) dG. Because cells were treated with NR after ferrous sulfate was removed, we conclude that we demonstrated an effect on DNA repair beyond antioxidation. In support of this conclusion, we determined the induction of mRNA expression over time after oxidative stress followed by NR administration of three major enzymes in the DNA base excision repair (BER) pathway: 8-oxoguanine-DNA glycosylase 1 (hOGG1), apurinic/apyrimidinic endonuclease and DNA polymerase beta (DNA poly beta). hOGG1 and DNA poly beta mRNA expression in cells after 24-h exposure to NR was increased significantly compared with control cells without NR. The intracellular concentration of NR after exposure to 80 micromol/L was 3 pmol/mg protein, which is physiologically achievable in tissues. In conclusion, the cancer-preventive effects of citrus fruits demonstrated in epidemiological studies may be due in part to stimulation of DNA repair by NR, which by stimulating BER processes may prevent mutagenic changes in prostate cancer cells.  相似文献   

7.
In this work, the possibility of preparing a nanoparticle with improved treatment properties was investigated. In this regard, synthesis, characterization, in vitro cytotoxicity and DNA binding of Fe3O4@oleate/oseltamivir magnetic nanoparticles (MNPs) were investigated. Fe3O4 nanoparticles were synthesized via chemical co-precipitation and coated by oleate bilayers. Then, Fe3O4@OA MNPs were functionalized with an antiviral drug (oseltamivir), for better biological applications. The MNPs were subsequently characterized by zeta sizer and Zeta potential measurements, Fourier transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM) analyses. The TEM image demonstrated that average sizes of Fe3O4@OA/oseltamivir MNPs were about 8?nm. The in vitro cytotoxicity of Fe3O4@OA/oseltamivir MNPs was studied against cancer cell lines (MCF-7 and MDA-MB-231) and compared with oseltamivir drug. The results illustrated that Fe3O4@OA/oseltamivir magnetic nanoparticles have better antiproliferative effects on the mentioned cell lines as compared with oseltamivir. Also, in vitro DNA binding studies were done by UV–Vis, circular dichroism, and Fluorescence spectroscopy. The results indicated that Fe3O4@OA/oseltamivir MNPs bound to DNA via groove binding. Moreover, this magnetic nanofluid has potential for magnetic hyperthermia therapy due to magnetic core of its nanoparticles.

Communicated by Ramaswamy H. Sarma  相似文献   


8.
Summary Properties of calf thymus DNA were investigated after treatment with the pesticides malathion (0,0-dimethyl-S-(1,2-bis ethoxycarbonyl ethyl)dithiophosphate) and DDVP (0,0-dimethyl-0-(2,2 dichlorovinyl)phosphate) in vitro by means of derivative (differential) pulse polarography (DPP), thermal denaturation curves recorded spectrophotometrically (Tm), viscometric measurements, and chromatography on the hydroxyapatite column. Changes in the properties of DNA were observed by means of DPP after only a few hours incubation with the pesticides, whereas the other methods did not detect any changes even after 48 h. The results obtained by DPP indicate that single-stranded segments and thermolabile regions are formed in DNA due to the action of the pesticides. This behaviour could perhaps be a consequence of guanine alkylation followed by depurination and chain scission at elevated temperatures. Malathion and DDVP differ in the kinetics of reaction with double-helical DNA. DDVP is more reactive and its action is also manifested after 72 h in changes in viscosity, Tm, and chromatographic behaviour on the hydroxyapatite column. The changes induced by malathion were, under identical conditions, not detectable by these methods.  相似文献   

9.
Phenobarbital induction of CYP2B genes is mediated by a complex phenobarbital-responsive enhancer (PBRU), which contains a binding site for nuclear factor-1 (NF-1) flanked by two DR-4 nuclear receptor (NR) binding sites for a heterodimer of constitutive androstane receptor (CAR) and retinoid X receptor (RXR). To examine potential interactions between NF-1 and CAR/RXR, binding of purified recombinant proteins to DNA, or to chromatin assembled using Drosophila embryo extract, was examined. NF-1 and CAR/RXR bound simultaneously and independently to the overlapping NF-1 and NR-1 sites; binding of CAR/RXR to the NR-2 site was modestly increased by NF-1 binding; and CAR/RXR bound to a new site in the PBRU region, designated NR-3. Assembly of plasmid DNA into chromatin using Drosophila extract resulted in linearly phased nucleosomes in the PBRU region. The apparent binding affinity of NF-1 was increased by about 10-fold in assembled chromatin compared with DNA, whereas CAR/RXR binding was decreased. As observed for DNA, however, simultaneous, largely independent, binding to the NF-1 and NR sites was observed. CAR-mediated transactivation of the PBRU in cultured cells of hepatic origin was inhibited by mutations in the NF-1 site, and overexpression of NF-1 increased CAR transactivation in HepG2 cells. These studies demonstrate that NF-1 and CAR/RXR can both bind to the PBRU at the same time and that chromatin assembly increases NF-1 binding, which is consistent with previous in vivo footprinting studies in which the NF-1 site was occupied in untreated animals and the NF-1 and flanking NR sites were occupied after phenobarbital treatment. CAR-mediated trans-activation of the PBRU was increased by NF-1, analogous to NF-1 effects on phenobarbital induction in previous transient transfection studies and consistent with mediation of phenobarbital induction by CAR.  相似文献   

10.
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that effectively inhibit both induced and spontaneous mutations. We have shown previously that VAN and CIN reduced the spontaneous mutant frequency in Salmonella TA104 (hisG428, rfa, ΔuvrB, pKM101) by approximately 50% and that both compounds significantly reduced mutations at GC sites but not at AT sites. Previous studies have suggested that VAN and CIN may reduce mutations in bacterial model systems by modulating DNA repair pathways, particularly by enhancing recombinational repair. To further explore the basis for inhibition of spontaneous mutation by VAN and CIN, we have determined the effects of these compounds on survival and mutant frequency in five Escherichia coli strains derived from the wild-type strain NR9102 with different DNA repair backgrounds. At nontoxic doses, both VAN and CIN significantly reduced mutant frequency in the wild-type strain NR9102, in the nucleotide excision repair-deficient strain NR11634 (uvrB), and in the recombination-proficient but SOS-deficient strain NR11475 (recA430). In contrast, in the recombination-deficient and SOS-deficient strain NR11317 (recA56), both VAN and CIN not only failed to inhibit the spontaneous mutant frequency but actually increased the mutant frequency. In the mismatch repair-defective strain NR9319 (mutL), only CIN was antimutagenic. Our results show that the antimutagenicity of VAN and CIN against spontaneous mutation required the RecA recombination function but was independent of the SOS and nucleotide excision repair pathways. Thus, we propose the counterintuitive notion that these antimutagens actually produce a type of DNA damage that elicits recombinational repair (but not mismatch, SOS, or nucleotide excision repair), which then repairs not only the damage induced by VAN and CIN but also other DNA damage—resulting in an antimutagenic effect on spontaneous mutation.  相似文献   

11.
The interaction of neutral red (NR) with calf thymus DNA (CT DNA) was investigated by spectrometric (UV-vis, circular dichroism and fluorescence) and voltammetric techniques. It was shown that the interaction of NR with DNA depended on the values of R (R is defined as the ratio of the concentration of NR to that of CT DNA) and pH of the solution. NR intercalated into CT DNA base pairs at lower R value (R < 2.4) and following by NR aggregating along the helical surface of DNA at higher R value (R > 2.4) in pH 6.0 solution. Interestingly, we found that at lower R value, NR intercalated into CT DNA with its long axis perpendicular or parallel to the dyad axis of DNA in the solution of pH 6.0. While in pH 7.0 solution, NR bound with CT DNA through intercalation and electrostatic interactions. The electrochemical inactive complexes, NR-2CT DNA, 3NR-CT DNA, and NR-CT DNA were formed when NR interacted with nucleic acids in pH 6.0 and 7.2 solutions, respectively. The corresponding intrinsic binding constants for these complexes were obtained by UV-vis and fluorescence spectrometric methods, respectively. The CD spectra showed that the conformation of CT DNA was converted from right-handed B-DNA to left-handed Z-DNA due to the aggregating of NR along the surface of DNA in pH 6.0 solution, whereas a conversion from B-DNA to C-DNA was induced due to the interaction of DNA with NR in pH 7.2 solution. Finally, two binding modes of NR with CT DNA in aqueous with different values of pH were shown in the scheme.  相似文献   

12.
Copper(II) complexes of three linear unsymmetrical tridentate ligands viz. N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L1), N,N-dimethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L2) and N,N-dimethyl-N'-((6-methyl)pyrid-2-ylmethyl)ethylenediamine (L3) have been isolated and characterized by elemental analysis, electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes [Cu(L2)Cl2] and [Cu(L3)Cl2] have been structurally characterized by X-ray crystallography. The [Cu(L2)Cl2] complex crystallizes in the monoclinic space group P2(1)/n with a=11.566(2) A, b=7.369(1) A, c=15.703(3) A, alpha=90 degrees , beta=109.68(8) degrees , gamma=90 degrees and Z=4 while [Cu(L3)Cl2] crystallizes in the triclinic space group P1 with a=9.191(2) A, b=12.359(3) A, c=14.880(3) A, alpha=79.61(13) degrees , beta=86.64(13) degrees , gamma=87.28(8) degrees and Z=2. The coordination geometries around copper (II) in these two complexes are best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). The distorted CuN3Cl basal plane in them is comprised of three nitrogen atoms of the meridionally coordinated ligand and a chloride ion and the axial position is occupied by the other chloride ion. The interaction of these complexes with Calf Thymus DNA (CT DNA) has been studied by using absorption, emission and circular dichroic spectral methods, thermal denaturation studies, viscometry and cyclic and differential pulse voltammetry. A strong blueshift in the ligand field band and a redshift in the ligand based bands of the copper(II) complexes on binding to DNA imply a covalent mode of DNA binding of the complexes, which involves coordination of most possibly guanine N7 nitrogen of DNA to form a CuN4 chromophore. This is supported by studying the interaction of the complexes with N-methylimidazole (N-meim), guanosine monophosphate (GMP), adenosine monophosphate (AMP) and cytidine (cytd) by ligand field and EPR spectral methods, which indicate the formation of a CuN4 chromophore only in the case of the more basic N-meim and GMP. The DNA melting curves obtained in the presence of copper(II) complexes reveal a monophasic and irreversible melting of the DNA strands and the high positive DeltaTm values (12-21 degrees C) also support the formation of strong Cu-N bonds by the complexes with DNA, leading to intra- and/or interstrand crosslinking of DNA. Competitive ethidium bromide (EthBr) binding studies show that the L2 and L3 complexes are less efficient than the L1 complex in quenching EthBr emission, which is consistent with their forming DNA crosslinking preventing the displacement of the DNA-bound EthBr. A very slight decrease in relative viscosity of DNA is observed on treating the L1 and L2 complexes with CT DNA; however, a relatively significant decrease is observed for the L3 complex suggesting that the length of the DNA fiber is shortened. DNA cleavage experiments show that all the complexes induce the cleavage of pBR322 plasmid DNA, the complex of L1 being more efficient than those of sterically hindered L2 and L3 ligands.  相似文献   

13.
The structure of R factor NR1 DNA in Proteus mirabilis has been studied by using the techniques of CsCl density gradient centrifugation, sedimentation in neutral and alkaline sucrose gradients, and electron microscopy. It has been shown that the nontransitioned form of NR1 DNA isolated from P. mirabilis cultured in drug-free medium is a37-mum circular deoxyribonucleic acid (DNA) with a density of 1.712 g/ml in a neutral CsCl gradient. This circular molecule is a composite structure consisting of a 29-mum resistance transfer factor containing the tetracycline-resistance genes (RTF-TC) and an 8-mum r-determinants component conferring resistance to chloramphenicol (CM), streptomycin/spectinomycin, and the sulfonamides. There are one to two copies of NR1 per chromosome equivalent of DNA in exponential-phase cells cultured in Penassay broth. After growth of PM15/NR1 in medium containing 100 mug of CM per ml, the density of the NR1 DNA increased from 1.712 g/ml to approximately 1.718 g/ml and the proportion of NR1 DNA relative to the chromosome is amplified about 10-fold. The changes in R factor DNA structure which accompany this phenomenon (termed the transition) have been studied. DNA density profiles of the transitioned NR1 DNA consist of a 1.718 g/ml band which is skewed toward the less dense side. The transitioned NR1 DNA consists of molecules containing the RTF-TC element attached to multiple copies of r-determinants DNA (poly-r-determinant R factors) and multimeric and monomeric autonomous r-determinants structures. Poly-r-determinant R factors have a density intermediate between the basic composite structure (1.712 g/ml) and r-determinants DNA (1.718 g/ml). These species presumably account for the skewing of the 1.718-g/ml DNA band toward the less dense side. When transitioned cells are subsequently cultured in drug-free medium, poly-r-determinant R factors and autonomous poly-r-determinants undergo dissociation to form smaller structures containing fewer copies of r-determinants. This process continues until, after prolonged growth in drug-free medium the NR1 DNA returns to the nontransitioned state which consists of an RTF-TC and a single copy of r-determinants.  相似文献   

14.
Previous studies have demonstrated that the genetic variations of glucocorticoid receptor gene (NR3C1) are associated with both familial steroid resistance and acquired steroid resistance in some diseases, such as Cushing's disease, leukemia, lupus nephritis, and female pseudohermaphroditism. In this study, we examined the genetic variations of NR3C1 in 35 children with sporadic steroid-resistant nephrotic syndrome (SRNS), and in 83 cases with sporadic steroid-sensitive NS (SSNS) using polymerase chain reaction, denaturing high-performance liquid chromatography and DNA sequencing, and analyzed possible associations between NR3C1 variants and steroid resistance in sporadic NS. No causative mutations were found; however, six previously identified and six novel polymorphisms, 1206C > T, 1374A > G, 2382C > T, 2193T > G, IVS7-68_-63delAAAAAA, and IVS8-9C > G, were detected. Two novel haplotypes, [1374A > G; IVS7-68_-63delAAAAAA; IVS8-9C > G; 2382C > T] and [1896C > T; 2166C > T; 2430T > C], of NR3C1 were also identified in sporadic NS and controls. The odds ratios (95% Confidence Interval) for the two novel NR3C1 haplotypes in the sporadic nephrotic children at risk of steroid resistance were 4.970 (0.889-27.788) and 2.194 (0.764-6.306), respectively, but the association between NR3C1 haplotypes and steroid resistance was not significant. Further studies on the possible association between the two novel NR3C1 haplotypes and steroid resistance in sporadic NS in larger cohorts are required.  相似文献   

15.
Multidrug resistance of the pandemic H1N1-2009 strain of influenza has been reported due to widespread treatment using the neuraminidase (NA) inhibitors, oseltamivir (Tamiflu), and zanamivir (Relenza). From clinical data, the single I223R (IR(1)) mutant of H1N1-2009 NA reduced efficacy of oseltamivir and zanamivir by 45 and 10 times, (1) respectively. More seriously, the efficacy of these two inhibitors against the double mutant I223R/H275Y (IRHY(2)) was significantly reduced by a factor of 12?374 and 21 times, respectively, compared to the wild-type.(2) This has led to the question of why the efficacy of the NA inhibitors is reduced by the occurrence of these mutations and, specifically, why the efficacy of oseltamivir against the double mutant IRHY was significantly reduced, to the point where oseltamivir has become an ineffective treatment. In this study, 1 μs of molecular dynamics (MD) simulations was performed to answer these questions. The simulations, run using graphical processors (GPUs), were used to investigate the effect of conformational change upon binding of the NA inhibitors oseltamivir and zanamivir in the wild-type and the IR and IRHY mutant strains. These long time scale dynamics simulations demonstrated that the mechanism of resistance of IRHY to oseltamivir was due to the loss of key hydrogen bonds between the inhibitor and residues in the 150-loop. This allowed NA to transition from a closed to an open conformation. Oseltamivir binds weakly with the open conformation of NA due to poor electrostatic interactions between the inhibitor and the active site. The results suggest that the efficacy of oseltamivir is reduced significantly because of conformational changes that lead to the open form of the 150-loop. This suggests that drug resistance could be overcome by increasing hydrogen bond interactions between NA inhibitors and residues in the 150-loop, with the aim of maintaining the closed conformation, or by designing inhibitors that can form a hydrogen bond to the mutant R223 residue, thereby preventing competition between R223 and R152.  相似文献   

16.
Intracellular location of plasmid NR1 (M = 58 Mg/mol, stringent control of replication, 1–2 copies perEscherichia coli chromosomal equivalent) was studied and compared with that of plasmid R6KΔ1 (M = 21 Mg/mol, relaxed control of replication, 10–15 copies perE. coli chromosomal equivalent), both inE. coli minicells. Considerable difference in relative distribution of molecules of these two plasmid DNA’s between the cytoplasm and the membrane fraction was found when components of the corresponding minicell lyzates were fractionated by sedimentation in a double-linear gradient of caesium chlorid and sucrose. Also the difference in relative numbers of NR1 DNA and R6KΔ1 DNA molecules stably associated with the membrane of minicells, determined by electron-microscopic examination of the fractions containing plasmid DNA-membrane complexes, was evaluated as statistically significant. The association of NR1 DNA molecules withE. coli minicell membrane was found to be a much more frequent event than such association of R6KΔ1 molecules. The absolute amount of plasmid DNA associated with membrane in a single minicell corresponds to one molecule for both NR1 and R6KAΔ1.  相似文献   

17.
A new biosensor employing immobilized DNA on a nano-structured conductive polymer fixed onto a platinum electrode is presented. Upon optimization of synthesis parameters, polypyrrole nanofibers, 30-90 nm in diameter, were synthesized in an aqueous media by the electropolymerization of pyrrole using normal pulse voltammetry (NPV). The nanofiber film was investigated by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Double-stranded DNA was physisorbed onto the PPy nanofiber films. Various parameters, including the pH and DNA concentration, were optimized. The DNA immobilized on the nanofiber films was characterized using differential pulse voltammetry (DPV) and Fourier-transform infrared (FTIR) spectroscopy. Using DPV to study the interaction of spermidine with DNA, a binding constant (K) value of 4.08 x 10(5)+/-0.05 M(-1) was obtained. For the determination of spermidine, the proposed method exhibited a good dynamic range, correlation coefficient (0.05-1.0 microM and 0.9983, respectively) and a low detection limit (0.02 microM), although Ca(2+) ions were found to electrostatically bind to DNA and weaken the spermidine-DNA interaction.  相似文献   

18.
19.
Wu L  Lu X  Jin J  Zhang H  Chen J 《Biosensors & bioelectronics》2011,26(10):4040-4045
In this work, an electrochemical DNA biosensor based on double-stranded DNA modified Au electrode (dsDNA/Au) was proposed for the rapid screening and detection of chlorinated benzenes pollutants, in which redox-active methylene blue (MB) was used to amplify the interaction between dsDNA and the target analyte. Using hexachlorobenzene (HCB) as a model analyte of chlorinated benzenes, the biosensor demonstrated a linear response with the logarithm of HCB concentrations from 100 pmol L(-1) to 100 nmol L(-1). The obtained detection limit was 30 pmol L(-1), which was remarkably superior to other biosensors. The interaction mechanism of the biosensor with HCB was proposed based on systematical characterization by cyclic voltammetry (CV), differential pulse voltammetry (DPV), UV-vis spectrometry and electrochemical quartz crystal microbalance (EQCM). Further studies revealed that the biosensor could screen chlorinated benzenes in the presence of 100 fold amount of other co-existing chemicals (ethyl acetate and sodium oxalate, etc.), and the response signal of the biosensors for different chlorinated benzenes was correlative to their respective toxicity. The proposed biosensor proved to be a promising "alarm" tool for rapid screening of chlorinated benzenes in real water samples.  相似文献   

20.
In this study, we have fabricated a label free DNA biosensor by modifying the platinum wire with electrochemically synthesized poly(3,4-ethylenedioxythiopene) and poly(p-aminobenzoic acid). A designed single-strand DNA oligo was immobilized with the carboxyl group of poly(p-aminobenzoic acid) and served as the probe, a target DNA was then hybridized with the probe under a proper condition. Differential pulse voltammetry was performed to characterize the hybridization efficiency in the presence of daunorubicin hydrochloride that was able to be intercalated into the hybridized double-strand DNA and possessed the redox activity. Our results revealed a satisfied linear correlation between the peak current of differential pulse voltammetry and the concentration of complementary target DNA. On the other hand, the mismatches between the target- and probe-DNA caused a significant reduction of electrochemical response, in which was correlated with the amount of mismatched base pairs, therefore the current DNA biosensor had potential applications not only in DNA quantification but also in mutation detection for clinical diagnostics and laboratory applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号