首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role played by external calcium and calcium channels in the recovery from aglycaemic hypoxia in cortical brain slices from 10-day old rats was investigated by1H and31P NMR. 30 minutes of aglycaemic hypoxia significantly decreased the levels of phosphocreatine (PCr), ATP, lactate and intracellular pH (pHi). After a 30 minute recovery period there was incomplete recovery of PCr and ATP with lactate increasing by 50% with pHi normal. When the aglycemic hypoxia was carried out in media which had no added calcium (≈10 μM) the PCr and ATP recovery was significantly greater. Application of diltiazem or verapamil but not nifedipine significantly improved the recovery from the aglycemic hypoxia. These data suggest that calcium influx through L-type voltagegated calcium channels is involved in the ischemic damage in neonatal brain which manifests itself as a decrease in the energy state and an increase in lactate. Dedication This article is dedicated to our friend and colleague Herman Bachelard. We wish to thank him for his comradeship, advice and support over many years. Our hope for him is a long and fruiful retirement and that he will remain active in the neurosciences for many years, even though the establishment has blown for “full time”.  相似文献   

2.
Summary Specific and uniform15N labelings along with site-directed mutagenesis of glutamine-binding protein have been utilized to obtain assignments of the His156, Trp32 and Trp.220 residues. These assignments have been made not only to further study the importance of these 3 amino acid residues in protein-ligand and protein-protein interactions associated with the active transport ofl-glutamine across the cytoplasmic membrane ofEscherichia coli, but also to serve as the starting points in the sequence-specific backbone assignment. The assignment of H2 of His156 refines the earlier, model where this particular proton formas an intermolecular hydrogen bond to the -carbonyl ofl-glutamine, while assignments of both Trp32 and Trp220 show the variation in local structures which ensure the specificity in ligand binding and protein-protein interaction. Using 3D NOESY-HMQC NMR, amide connectivities can be traced along 8–9 amino acid residues at a time. This paper illustrates the usefulness of combining15N isotopic labeling and multinuclear, multidimensional NMR techniques for a structural investigation of a protein with a molecular weight of 25 000.  相似文献   

3.
Abstract

It was found by 1H, 13C and 15N NMR study that substitution of 4,9-dihydro-4, 6-dimethyl-9-oxo-3-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosyl) imidazo [1,2-a]purine (wyosine triacetate, 1) at C2 position with electronegative groups CH3O and C6H5CH2O results in a noticeable electron distribution disturbance in the “left-hand” imidazole ring and a significant increase in the North conformer population of the sugar moiety.  相似文献   

4.
The 1H NMR spectra of seven branched alpha-cyclodextrins (alpha-CDs) were observed and analyzed in detail. They were compared with spectra of alpha-CD and amylose. Although these branched alpha-CDs consist only of alpha-D-glucose with the same alpha-(1-->4) O-glucosyl binding, aside from one exception, differences in chemical shifts of corresponding signals were significantly large. Especially, differences in the chemical shift in anomeric protons were considerably large. Subtle differences in glucosyl binding directly influences chemical shifts of these protons because anomeric protons are located adjacent to the glucosyl binding sites.  相似文献   

5.
In situ 1H NMR monitoring of metyrapone incubations with resting-cells of two strains of Mycobacterium, Mycobacterium aurum MO1 and Mycobacterium sp. RP1, showed the biotransformation of this compound, and more precisely the carbonyl-reduction of metyrapone into the corresponding alcohol, metyrapol. This reduction produced both enantiomers. The use of inhibitors allowed us to show the multiple enzymatic activities involved in this biotransformation including carbonyl reductase (EC 1.1.1.1.84) from the short-chain dehydrogenase superfamily and aldehyde reductase (EC 1.1.1.2) from the aldo-keto reductase superfamily.  相似文献   

6.
Summary Infrared and proton resonance spectra have been used to characterize fraction extracted sequentially from humic and fulvic acids by diethylether, acetone, dioxane, tetrahydrofuran, pyridine and dimethylformamide. The results showed that the same solvents extracted structurally similar components from both humic and fulvic acids. On the other hand, the spectra showed solvent-dependent differences, some being characteristic for a preponderance of aliphatic structures, others for aromatic structures.  相似文献   

7.
Two acetylcholinesterase (AChE) inhibitors structurally related to Tacrine, 6-methoxytacrine (1a) and 9-heptylamino-6-methoxytacrine (1b), and their interaction with Electrophorus Electricus AChE were investigated. The complete assignment of the 1H and 13C NMR spectra of 1a and 1b was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. This study was undertaken to elucidate the interaction modes between AChE and 1a and 1b in solution, using NMR. The interaction between the two inhibitors and AChE was studied by the analysis of the motional parameters non-selective and selective spin-lattice relaxation times, thereby allowing the motional state of 1a and 1b, both free and bound with AChE, to be defined. The relaxation data pointed out the ligands molecular moiety most involved in the binding with AChE. The relevant ligand/enzyme interaction constants were also evaluated for both compounds and resulted to be 859 and 5412M(-1) for 1a and1b, respectively.  相似文献   

8.
The binding of trimethoprim and [1,3,2-amino-15N3]-trimethoprim to Lactobacillus casei dihydrofolate reductase has been studied by 15N and 1H NMR spectroscopy. 15N NMR spectra of the bound drug were obtained by using polarisation transfer pulse sequences. The 15N chemical shifts and 1H-15N spin-coupling constants show unambiguously that the drug is protonated on N1 when bound to the enzyme.The N1-proton resonance in the complex has been assigned using the 15N-enriched molecule. The temperature-dependence of the linewidth of this resonance has been used to estimate the rate of exchange of this proton with the solvent: 160±10s-1 at 313 K, with an activation energy of 75 (±9) kJ·mole-1. This is considerably faster than the dissociation rate of the drug from this complex, demonstrating that there are local fluctuations in the structure of the complex.  相似文献   

9.
10.
Summary In this study we report on the 1H, 13C and 15N NMR chemical shifts for the random coil state and nearest-neighbor sequence effects measured from the protected linear hexapeptide Gly-Gly-X-Y-Gly-Gly (where X and Y are any of the 20 common amino acids). We present data for a set of 40 peptides (of the possible 400) including Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly, measured under identical aqueous conditions. Because all spectra were collected under identical experimental conditions, the data from the Gly-Gly-X-Ala-Gly-Gly series provide a complete and internally consistent set of 1H, 13C and 15N random coil chemical shifts for all 20 common amino acids. In addition, studies were also conducted into nearest-neighbor effects on the random coil shift arising from a variety of X and Y positional substitutions. Comparisons between the chemical shift measurements obtained from Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly reveal significant systematic shift differences arising from the presence of proline in the peptide sequence. Similarly, measurements of the chemical shift changes occurring for both alanine and proline (i.e., the residues in the Y position) are found to depend strougly on the type of amino acid substituted into the X position. These data lend support to the hypothesis that sequence effects play a significant role in determining peptide and protein chemical shifts.  相似文献   

11.
The interaction of dimethylsulfoxide (Me2SO) with glutathione was investigated under non-equilibrium conditions in solution using 1H NMR and in intact erythrocytes using 1H spin-echo NMR. In solution the reaction was observed to follow second-order kinetics (Rate = k1[glutathione][Me2SO]) at 300 K pH 7.4, k(sol) = 4.7 x 10(-5)mol(-1)L(1)s(-1). In intact erythrocytes the rate constant for the cellular environment, k(cell), was found to be slightly larger at 8.1 x 10(-5)mol(-1)L(1)s(-1). Furthermore, the reaction of Me2SO with erythrocyte glutathione showed a biphasic dependence on the Me2SO concentration, with little oxidation of glutathione occurring until the Me2SO concentration exceeded 0.5 molL(-1). The results suggest that at lower concentrations, Me2SO can be effectively removed, most probably by reaction with glutathione, which is regenerated by glutathione reductase, although preferential reaction with other cellular components (e.g., membrane or cellular thiols) cannot be ruled out. Thus the concentrations of Me2SO that are commonly used in cryopreservation of mammalian cells ( approximately 1.4 molL(-1)) can cause oxidation of intracellular glutathione.  相似文献   

12.

Background

In the Crabtree-negative Kluyveromyces lactis yeast the rag8 mutant is one of nineteen complementation groups constituting the fermentative-deficient model equivalent to the Saccharomyces cerevisiae respiratory petite mutants. These mutants display pleiotropic defects in membrane fatty acids and/or cell walls, osmo-sensitivity and the inability to grow under strictly anaerobic conditions (Rag phenotype). RAG8 is an essential gene coding for the casein kinase I, an evolutionary conserved activity involved in a wide range of cellular processes coordinating morphogenesis and glycolytic flux with glucose/oxygen sensing.

Methods

A metabolomic approach was performed by NMR spectroscopy to investigate how the broad physiological roles of Rag8, taken as a model for all rag mutants, coordinate cellular responses.

Results

Statistical analysis of metabolomic data showed a significant increase in the level of metabolites in reactions directly involved in the reoxidation of the NAD(P)H in rag8 mutant samples with respect to the wild type ones. We also observed an increased de novo synthesis of nicotinamide adenine dinucleotide. On the contrary, the production of metabolites in pathways leading to the reduction of the cofactors was reduced.

Conclusions

The changes in metabolite levels in rag8 showed a metabolic adaptation that is determined by the intracellular NAD(P)+/NAD(P)H redox balance state.

General significance

The inadequate glycolytic flux of the mutant leads to a reduced/asymmetric distribution of acetyl-CoA to the different cellular compartments with loss of the fatty acid dynamic respiratory/fermentative adaptive balance response.  相似文献   

13.
Summary We determined the resonance assignments, secondary structure and general topology of the 11-kDa sweet protein single-chain monellin (SCM), using two-dimensional proton nuclear magnetic resonance spectroscopy (2D-NMR). SCM is a genetically engineered protein whose design is based on the crystal structure of natural, two-chain monellin (Kim et al., 1989). Analysis of the NMR spectra shows that the secondary structure of SCM consists of a five-strand anti-parallel -sheet and a 15-residue -helix. Tertiary NOE constraints place the a-helix on the hydrophobic side of the -sheet, and indicate that the sheet is partially wrapped around the helix. The general structural features determined for SCM are similar to those of native monellin (Ogata et al., 1987). Some differences between the SCM structure in solution and the crystal structure of monellin are discussed.  相似文献   

14.
Summary The 1H, 13C and 15N NMR resonances of serine protease PB92 have been assigned using 3D tripleresonance NMR techniques. With a molecular weight of 27 kDa (269 residues) this protein is one of the largest monomeric proteins assigned so far. The side-chain assignments were based mainly on 3D H(C)CH and 3D (H)CCH COSY and TOCSY experiments. The set of assignments encompasses all backbone carbonyl and CHn carbons, all amide (NH and NH2) nitrogens and 99.2% of the amide and CHn protons. The secondary structure and general topology appear to be identical to those found in the crystal structure of serine protease PB92 [Van der Laan et al. (1992) Protein Eng., 5, 405–411], as judged by chemical shift deviations from random coil values, NH exchange data and analysis of NOEs between backbone NH groups.Abbreviations 2D/3D/4D two-/three-/four-dimensional - HSQC heteronuclear single-quantum coherence - HMQC heteronuclear multiple-quantum coherence - COSY correlation spectroscopy - TOCSY total correlation spectroscopy - NOE nuclear Overhauser enhancement (connectivity) - NOESY 2D NOE spectroscopy Experiment nomenclature (H(C)CH, etc.) follows the conventions used elsewhere [e.g. Ikura et al. (1990) Biochemistry, 29, 4659–4667].  相似文献   

15.
Conditions for registration of urinary 1H NMR spectra have been optimized in order to achieve maximal accuracy of quantitative analysis. Urinary samples from patients with acute pancreatitis have been investigated and spectral data of identified urinary metabolites and results of their quantitative determination are given. Employment of 1H NMR spectra is perspective for the development of new laboratory diagnostic methods.  相似文献   

16.
1H NMR relaxometry is applied for the investigation of pore size distributions in geological substrates. The transfer to humous soil samples requires the knowledge of the interplay between soil organic matter, microorganisms and proton relaxation. The goal of this contribution is to give first insights in microbial effects in the 1H NMR relaxation time distribution in the course of hydration of humous soil samples. We observed the development of the transverse relaxation time distribution of the water protons after addition of water to air dried soil samples. Selected samples were treated with cellobiose to enhance microbial activity. Besides the relaxation time distribution, the respiratory activity and the total cell counts were determined as function of hydration time. Microbial respiratory activities were 2–15 times higher in the treated samples and total cell counts increased in all samples from 1×109 to 5×109 cells g−1 during hydration. The results of 1H NMR relaxometry showed tri-, bi- and mono-modal relaxation time distributions and shifts of peak relaxation times towards lower relaxation times of all investigated soil samples during hydration. Furthermore, we found lower relaxation times and merging of peaks in soil samples with higher microbial activity. Dissolution and hydration of cellobiose had no detectable effect on the relaxation time distributions during hydration. We attribute the observed shifts in relaxation time distributions to changes in pore size distribution and changes in spin relaxation mechanisms due to dissolution of organic and inorganic substances (e.g. Fe3+, Mn2+), swelling of soil organic matter (SOM), production and release of extracellular polymeric substances (EPS) and bacterial association within biofilms.  相似文献   

17.
1. The high-resolution 1H NMR (MRS) spectra of human brain tumor homogenates revealed a broad resonance at 5.3–5.4 ppm in glioblastoma multiforme (N = 16) and brain metastases (N = 2). The broad resonance was identified as ceramide, a sphingosine–fatty acid combination portion of ganglioside, indicating an elevated abundance of monounsaturated fatty acids. GLC analysis of gangliosides in the highly malignant glioblastoma multiforme revealed that the elevated monounsaturated fatty acid is oleic acid (C18:1). The resonance at 5.3–5.4 ppm region was not detectable in normal human brain (N = 2), in meningiomas (N = 2), or in low-grade astrocytomas (N = 12). In normal human brain the abundance of monounsaturated fatty acid is minimal.2. This investigation was made possible because the method of producing homogenate resulted in (i) no loss of lipids during the process and (ii) a well-homogenised sample, with (iii) no loss in chemical integrity.3. The properties of tumor gangliosides include antigenic specificity and immunosuppresive activity and the ceramide, a sphingosine–fatty acid combination, noticeably influences the ganglioside immunosuppressive activity.4. The observation of 1H NMR ceramide resonance in high-malignant brain tumors emphasizes the dramatic role of aberrant gangliosides and ceramide precursors on the grade of malignancy and invasiveness.5. Further insight into the specific nature of the ceramide portion of gangliosides in grading the malignancy of brain tumors should be investigated further.  相似文献   

18.
It is demonstrated that the H2BC NMR pulse sequence (J. Am. Chem. Soc.2005, 127, 6154, Magn. Reson. Chem.2005, 43, 971-974) offers unambiguous assignments and significant simplification of NMR spectra of large and complex carbohydrates compared to other techniques for the establishment of correlations over more than one bond. H2BC almost exclusively correlates protons and proton-bearing carbon spins separated by two covalent bonds and is independent of occasionally vanishing (2)J(CH) coupling constants, which alleviates the problem of missing two-bond correlations in HMBC spectra. H2BC also solves the problem of distinguishing two- and three-bond correlations in HSQC-TOCSY or HMBC. It is a further asset of H2BC that the experiment is significantly shorter than HMBC and HSQC-TOCSY, and hence less sensitive to transverse relaxation. The H2BC experiment is demonstrated on an approximately 30-residue oligosaccharide from Francisella victoria.  相似文献   

19.
The focus of this work was to determine the utility of 1H NMR spectroscopy in the quantification of sugars resulting from the solubilization of hemicelluloses during the autohydrolysis of hardwoods and the use of this technique to evaluate the kinetics of this process over a range of temperatures and times. Yields of residual xylan, xylooligomers, xylose, glucose, and the degraded products of sugars, i.e., furfural and HMF (5-hydroxymethyl furfural), were determined. The monosaccharide and oligomer contents were quantified with a recently developed high resolution 1H NMR spectroscopic analysis. This method provided precise measurement of the residual xylan and cellulose remaining in the extracted wood samples and xylose and glucose in the hydrolyzates. NMR was found to exhibit good repeatability and provided carbohydrate compositional results comparable to published methods for sugar maple and aspen woods.  相似文献   

20.
The metabolomic analysis of wild type and constitutive salicylic acid producing tobacco plants (CSA tobacco, Nicotiana tabacum 'Samsun' NN) plants overexpressing salicylate biosynthetic genes was carried out by 1H NMR spectrometry and multivariate analysis techniques. The principle component analysis (PCA) of the 1H NMR spectra showed a clear discrimination between those samples by PC1 and PC2. The discrimination of non-inoculated, TMV-virus inoculated, and systemic leaves or veins could also be obtained by PCA analysis. Major peaks in 1H NMR spectra contributing to the discrimination were assigned as those of chlorogenic acid, malic acid, and sugars. This method allows an efficient differentiation between wild type and transgenic plants without any pre-purification steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号