首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plants on contaminated mining soils often show a reduced growth due to nutrient depletion as well as trace elements (TEs) toxicity. Since those conditions threat plant's survival, plant growth-promoting rhizobacteria (PGPRs), such as rhizobia, might be of crucial importance for plant colonization on TE-contaminated soils. Native rhizobia from mining soils are promising candidates for bioaugmented phytoremediation of those soils as they are adapted to the specific conditions. In this work, rhizobia from Zn- and Cd-contaminated mining soils were in vitro screened for their PGP features [organic acids, indole-3-acetic acid (IAA), and siderophore (SID) production; 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity; and Ca3(PO4)2 solubilization] and Zn and Cd tolerance. In addition, some type and reference rhizobia strains were included in the study as well. The in vitro screening indicated that rhizobia and other native genera have great potential for phytoremediation purposes, by exerting, besides biological N2 fixation, other plant growth-promoting traits. Leucaena leucocephalaMesorhizobium sp. (UFLA 01-765) showed multielement tolerance and an efficient symbiosis on contaminated soil, decreasing the activities of antioxidative enzymes in shoots. This symbiosis is a promising combination for phytostabilization.  相似文献   

2.

Plant growth-promoting rhizobacteria are bacteria that improve plant growth and reduce plant pathogen damages. In this study, 100 nodule bacteria were isolated from chickpea, screened for their plant growth-promoting (PGP) traits and then characterised by PCR-RFLP of 16 S rDNA. Results showed that most of the slow-growing isolates fixed nitrogen but those exhibiting fast-growth did not. Fourteen isolates solubilized inorganic phosphorus, 16 strains produced siderophores, and 17 strains produced indole acetic acid. Co-culture experiments identified three strains having an inhibitory effect against Fusarium oxysporum, the primary pathogenic fungus for chickpea in Tunisia. Rhizobia with PGP traits were assigned to Mesorhizobium ciceri, Mesorhizobium mediterraneum, Sinorhizobium meliloti and Agrobacterium tumefaciens. We noted that PGP activities were differentially distributed between M. ciceri and M. mediterraneum. The region of Mateur in northern Tunisia, with clay–silty soil, was the origin of 53% of PGP isolates. Interestingly, we found that S. meliloti and A. tumefaciens strains did not behave as parasitic nodule-bacteria but as PGP rhizobacteria useful for chickpea nutrition and health. In fact, S. meliloti strains could solubilize phosphorus, produce siderophore and auxin. The A. tumefaciens strains could perform the previous PGP traits and inhibit pathogen growth also. Finally, one candidate strain of M. ciceri (LL10)—selected for its highest symbiotic nitrogen fixation and phosphorus solubilization—was used for field experiment. The LL10 inoculation increased grain yield more than three-fold. These finding showed the potential role of rhizobia to be used as biofertilizers and biopesticides, representing low-cost and environment-friendly inputs for sustainable agriculture.

  相似文献   

3.
Rhizobial strains, rescued from the root nodules of Robinia pseudoacacia growing in Japan and Poland, were characterized for the phenotypic properties, genomic diversity as well as phylogeny and compared with the reference strains representing different species and genera of nodule bacteria. They had a moderately slow growth rate, a low tolerance to antibiotics, a moderate resistance to NaCl and produced acid in yeast mannitol agar. Cluster analysis based on the phenotypic features divided all bacteria involved in this study into four phena, comprising: (1) Rhizobium sp. + Sinorhizobium sp., (2) Bradyrhizobium sp., (3) R. pseudoacacia microsymbionts + Mesorhizobium sp., and (4) Rhizobium galegae strains at similarity coefficient of 74%. R. pseudoacacia nodule isolates and Mesorhizobium species were placed on a single branch clearly distinct from other rhizobium genera lineages. Strains representing R. pseudoacacia microsymbionts shared 98–99% 16S rDNA sequence identity with Mesorhizobium species and in 16S rDNA phylogenetic tree all these bacteria formed common cluster. The rhizobia tested are genomically heterogeneous as indicated by the AFLP (Amplified Fragment Length Polymorphism) method. The bacteria studied exhibited high degree of specificity for nodulation. Nitrogenase structural genes in these strains were located on 771–961 kb megaplasmids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Sainfoin (Onobrychis viciifolia), a temperate perennial forage legume, can be nodulated by rhizobia isolated from 3 arctic legume species:Astragalus alpinus, oxytropis maydelliana andOxytropis arctobia. Arctic rhizobia, which are adapted to growth at low temperatures, may be useful in improving symbiotic nitrogen fixation during cold phases of the growing season, if they are effective on a temperate legume. In this study, we report on the symbiotic effectiveness of arctic rhizobia on sainfoin, as appraised by the total shoot dry matter yield obtained from 2 harvests. Under N-free conditions, 5 arctic strains at the first harvest and 8 at the second harvest were as effective as temperate standard strains. In the presence of 30 mgl−1 NO3-N, 7 arctic strains gave significantly higher yields than temperate strains at the second harvest. These results indicate that effective arctic rhizobia have a potential for use as inoculants on sainfoin. Contribution no 325 of Agriculture Canada Research Station a Sainte-Foy.  相似文献   

5.
The cadmium (Cd) resistant bacteria were isolated from soils of Damanganga river, Vapi, and identified 11 potential Cd resistant bacteria based on 16S rDNA sequences. The Cd resistant bacteria belonged to four different genera: Providencia spp., Morganella sp., Stenotrophomonas sp., and Bacillus spp. The assessment of plant growth-promoting (PGP) parameters revealed that the Cd tolerant bacteria showed one or more PGP properties. Further, a pot experiment was conducted to elucidate the effects of Cd resistant bacteria on the plant growth and the uptake of Cd by Sesbania bispinosa. The bacterized seedlings recorded 36.0–74.8% and 21.2–32.9% higher root and shoot lengths, respectively, in Cd amended soil compared with control. The Cd mobilization in the root of S. bispinosa by microbial inoculants ranged from 0.02 ± 0.01 to 1.11 ± 0.06 ppm. The enhanced concentrations of Cd accumulation in S. bispinosa roots correspond to the effect of the bacterial strains on metal mobilization in soil. The present observations showed that the Cd resistant strains protect the plants against the inhibitory effects of Cd, probably due to the production of PGP properties. The present results provided a new insight into the phytoremediation of Cd contaminated soil.  相似文献   

6.
Measurements of multiplication in liquid culture indicated that fast-growing Lotus rhizobia (Rhizobium loti) were tolerant of acidity and aluminium (at least 50 μM A1 at pH 4.5). Slow-growing Lotus rhizobia (Bradyrhizobium sp. (Lotus)) were less tolerant of acidity but equally tolerant of A1. Both genera were able to nodulateLotus pedunculatus in an acid soil (pH 4.1 in 0.01M CaCl2) and the slow-growing strains were more effective than the fast-growing strains in this soil over 30 days.  相似文献   

7.
Novel, root-associated Pseudomonas and Burkholderia strains with biological control and plant growth-promoting (PGP) traits are being sought for biotechnological application in agriculture. We present a new isolation approach for recovery of rhizoplane and/or endophytic Pseudomonas and Burkholderia spp. with desirable biocontrol and PGP phenotypes. The method may enable better targeted biodiscovery of these two important genera.  相似文献   

8.
The occurrence and the distribution of rhizobial populations naturally associated to Acacia seyal Del. were characterized in 42 soils from Senegal. The diversity of rhizobial genotypes, as characterized by polymerase chain reaction restriction fragment length polymorphism (RFLP) analysis of 16S–23S rDNA, performed on DNA extracted from 138 nodules resulted in 15 clusters. Results indicated the widespread occurrence of compatible rhizobia associated to A. seyal in various ecogeographic areas. However, the clustering of rhizobial populations based on intergenic spacer (IGS) RFLP profiles did not reflect their geographic origin. Four genera were discriminated on the basis of 16S rRNA gene sequences of the strains representative for the IGS-RFLP profiles. The majority of rhizobia associated to A. seyal were affiliated to Mesorhizobium and Sinorhizobium 64 and 29%, respectively, of the different IGS-RFLP profiles. Our results demonstrate the coexistence inside the nodule of plant-pathogenic non-N2-fixing Agrobacterium and Burkholderia strains, which induced the formation of ineffective nodules, with symbiotic rhizobia. Nodulation was recorded in saline soils and/or at low pH values or in alkaline soils, suggesting adaptability of natural rhizobial populations to major ecological environmental stress and their ability to establish symbiotic associations within these soil environments. These results contribute to the progressing research efforts to uncover the biodiversity of rhizobia and to improve nitrogen fixation in agroforestry systems in sub-Saharan Africa.  相似文献   

9.
A. V. Sturz 《Plant and Soil》1995,175(2):257-263
Healthy potato tubers (Solanum tuberosum L.) cv. Kennebec were found to be internally colonized by non-pathogenic bacterial populations originating from root zone soil. These endophytic bacteria were categorized, on the basis of bioassays, as plant growth promoting (PGP), plant growth retarding (PGR) and plant growth neutral (PGN). Genera isolated from tubers included Pseudomonas, Bacillus, Xanthomonas, Agrobacterium, Actinomyces and Acinetobacter. The PGP and PGR isolates were similarly distributed throughout these genera. Bacterial populations increased in the root zone soil directly adjacent to the seed piece during and immediately following seed piece decay. Bacteria sampled at this time were capable of promoting tuber number and weight. The proportions of PGP, PGR and PGN bacteria in the root zone were altered as endophytic bacteria were released from the decaying seed piece. The study indicates that endophytic bacteria present in the seed tubers may play an important role in seed piece decay, tuberization and plant growth.  相似文献   

10.
There is currently an increasing demand for the characterization of endophytic bacteria isolated from different parts of plants (rhizosphere, roots, fruit, leaf) in order to improve the organic agriculture practices. The current research was performed to identify both rhizospheric bacteria isolated from the rhizosphere of Ficus carica in three different sites in the north of Tunisia and endophytic bacteria isolated from dried figs. We then characterized them for a diversity of plant growth-promoting (PGP) activities. A collection of 120 isolates from rhizospheric soil and 9 isolates from dried figs was obtained and purified. 16SrDNA gene amplification of rhizospheric bacteria revealed significant diversity and allowed for the assigning of the isolates to 6 phyla: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Representative strains of the collection (90 strains) were tested for numerous PGP activities and resistance to abiotic stresses. The most common PGP trait for all bacteria from the three regions was siderophore production (62%), followed by cellulase (38%), then protease activity (37%), then by lipases activity (17%) and lastly by solubilization of phosphates (9%). Twenty -three strains that showed most PGP traits were selected, 8 strains presented 12 or more, and 15 strains displayed between 7 and 11 of 17 PGP activities. The majority of the isolates manifested a possible adaptation to abiotic stress and unfavorable environments. PCR-DGGE analysis of soil rhizosphere of the three sites allowed also for the acquisition of a Cluster analysis of rhizospheric bacterial communities. Our current study identified and characterized for the first time in Tunisia rhizospheric and endophytic bacteria from dried fruit of Ficus carica.  相似文献   

11.
Bioremediation of arsenic (As) pollution is an important environmental issue. The present investigation was carried out to isolate As-resistant novel bacteria and characterize their As transformation and tolerance ability. A total of 170 As-resistant bacteria were isolated from As-contaminated soils at the Kangjiawan lead–zinc tailing mine, located in Hunan Province, southern China. Thirteen As-resistant isolates were screened by exposure to 260 mM Na2HAsO4·7H2O, most of which showed a very high level of resistance to As5+ (MIC?≥?600 mM) and As3+ (MIC?≥?10 mM). Sequence analysis of 16S rRNA genes indicated that the 13 isolates tested belong to the phyla Firmicutes, Proteobacteria and Actinobacteria, and these isolates were assigned to eight genera, Bacillus, Williamsia, Citricoccus, Rhodococcus, Arthrobacter, Ochrobactrum, Pseudomonas and Sphingomonas. Genes involved in As resistance were present in 11 of the isolates. All 13 strains transformed As (1 mM); the oxidation and reduction rates were 5–30% and 10–51.2% within 72 h, respectively. The rates of oxidation by Bacillus sp. Tw1 and Pseudomonas spp. Tw224 peaked at 42.48 and 34.94% at 120 h, respectively. For Pseudomonas spp. Tw224 and Bacillus sp. Tw133, the highest reduction rates were 52.01% at 48 h and 48.66% at 144 h, respectively. Our findings will facilitate further research into As metabolism and bioremediation of As pollution by genome sequencing and genes modification.  相似文献   

12.
Summary Soil + charcoal (1∶3) carrier based and liquid cultures of Rhizobia were used to inoculate wheat seed cv. HD2329. The plants received 100 kg N in two equal splits and 60 kg P2O5 and 40 kg K20 ha−1. Inoculation with rhizobia had little effect on grain yield of wheat. Significant increase in straw yield and N-uptake occurred due to inoculation. A comparison of results of a similar experiment conducted during 1983–84, showed that inoculation with the same strains of rhizobia and application 50 kg N ha−1 as basal dressing, was more effective in increasing yield and N-uptake in wheat cv. HD2329. It appears reasonable to assume occurrence of nitrogen fixation by root nodule bacteria in rhizosphere of wheat.  相似文献   

13.
Effects of salt on rhizobia and bradyrhizobia: a review   总被引:2,自引:0,他引:2  
Rhizobia and bradyrhizobia strains vary in their tolerance to salt-stress. Rhizobium strains (fast-growers) are more salt-tolerant than strains of Bradyrhizobium (slow-growers). However, salt-tolerance in both genera is dependent upon ionic species, pH value, temperature, carbon source and the presence of osmoprotectant solutes. The harmful effect of salts on growth of both genera can be attributed to the specific ion effect rather than the osmotic effect. The salt-tolerance of different strains of rhizobia and bradyrhizobia is not related to their ecological origin. Data for salt tolerance of 684 strains of rhizobia and bradyrhizobia were collected from many reports. Most of the reports confound the effects of salt and express the concentrations of salts in percentage (%), electrical conductivity (dS m-1), molar concentration (m ) or osmotic pressure (MPa) regardless of their differences. All the published data were compiled and recalculated from the different expressions to their equivalent molar concentration (m ) of NaCl. A suggested classification of salt-tolerance of rhizobia and bradyrhizobia from the compiled data is presented.  相似文献   

14.
Three slow-growingBradyrhizobium japonicum (G3, USDA-110 and KUL-150) of diverse origins and two fast-growing strains ofRhizobium fredii (USDA-192 and USDA-193) were tested with a cropped soybean (Glycine max L. Merrill) cultivar, two cowpeas (Vigna unguiculata), one mung-bean (Phaseolus radiata), one winged-bean (Psophocarpus tetragonolobus) and one field bean (Phaseolus vulgaris) varieties.TheR. fredii strains nodulated and fixed Nitrogen as effectively as the strains ofB. japonicum in a modern european soybean cultivar, namely Fiskeby V. The other western bred soybeans tested were not nodulated by theseR. fredii strains. All of the soybean rhizobia produced nodules in both cowpeas and in mung-bean; theR. fredii strains showed effective N2-fixation in the cowpeas, particularly USDA-193, yielding shoot dry weights greater than those from theB. japonicum. The symbiotic performance of theR. fredii strains with soybean and other legumes indicated that they should be placed in an intermediate group between the slow-growingB. japonicum and cowpearhizobium sp.The hydrogen uptake activites suggested a possible host effect on the expression of such genes in one out of theB. japonicum strains tested. Furthermore, the slow-growing rhizobia showed significantly higher nitrate-reduction than theR. fredii in the nodules.  相似文献   

15.
The presence of explosives in soils and the interaction with drought stress and nutrient limitation are among the environmental factors that severely affect plant growth on military soils. In this study, we seek to isolate and identify the cultivable bacteria of a 2,4‐dinitrotoluene (DNT) contaminated soil (DS) and an adjacent grassland soil (GS) of a military training area aiming to isolate new plant growth‐promoting (PGP) and 2,4‐DNT‐degrading strains. Metabolic profiling revealed disturbances in Ecocarbon use in the bare DS; isolation of cultivable strains revealed a lower colony‐forming‐unit count and a less diverse community associated with DS in comparison with GS. New 2,4‐DNT‐tolerant strains were identified by selective enrichments, which were further characterized by auxanography for 2,4‐DNT use, resistance to drought stress, cold, nutrient starvation and PGP features. By selecting multiple beneficial PGP and abiotic stress‐resistant strains, efficient 2,4‐DNT‐degrading consortia were composed. After inoculation, consortium UHasselt Sofie 3 with seven members belonging to Burkholderia, Variovorax, Bacillus, Pseudomonas and Ralstonia species was capable to successfully enhance root length of Arabidopsis under 2,4‐DNT stress. After 9 days, doubling of main root length was observed. Our results indicate that beneficial bacteria inhabiting a disturbed environment have the potential to improve plant growth and alleviate 2,4‐DNT stress.  相似文献   

16.
The mutualism between legumes and nitrogen-fixing soil bacteria (rhizobia) is a key feature of many ecological and agricultural systems, yet little is known about how this relationship affects aboveground interactions between plants and herbivores. We investigated the effects of the rhizobia mutualism on the abundance of a specialized legume herbivore on soybean plants. In a field experiment, soybean aphid (Aphis glycines) abundances were measured on plants (Glycine max) that were either (1) treated with a commercial rhizobial inoculant, (2) associating solely with naturally occurring rhizobia, or (3) given nitrogen fertilizer. Plants associating with naturally occurring rhizobia strains exhibited lower aphid population densities compared to those inoculated with a commercial rhizobial preparation or given nitrogen fertilizer. Genetic analyses of rhizobia isolates cultured from field plants revealed that the commercial rhizobia strains were phylogenetically distinct from naturally occurring strains. Plant size, leaf nitrogen concentration, and nodulation density were similar among rhizobia-associated treatments and did not explain the observed differences in aphid abundance. Our results demonstrate that plant–rhizobia interactions influence plant resistance to insect herbivores and that some rhizobia strains confer greater resistance to their mutualist partners than do others.  相似文献   

17.
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume–rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume–rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume–rhizobia symbiosis. The means by which these processes enhance the legume–rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume–rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.  相似文献   

18.
It was known that nitrogenase genes and proteins are well conserved even though they are present in a large variety of phylogenetically diverse nitrogen fixing bacteria. This has lead to the speculation, among others, that nitrogen fixation (nif) genes were spread by lateral gene transfer relatively late in evolution. Here we report an attempt to test this hypothesis.We had previously established the complete nucleotide sequences of the three nitrogenase genes from Bradyrhizobium japonicum, and have now analyzed their homologies (or the amino acid sequence homologies of their gene products) with corresponding genes (and proteins) from other nitrogen fixing bacteria. There was a considerable sequence conservation which certainly reflects the strict structural requirements of the nitrogenase iron-sulfur proteins for catalytic functioning. Despite this, the sequences were divergent enough to classify them into an evolutionary scheme that was conceptually not different from the phylogenetic positions, based on 16S rRNA homology, of the species or genera harboring these genes. Only the relation of nif genes of slow-growing rhizobia (to which B. japonicum belongs) and fast-growing rhizobia was unexpectedly distant. We have, therefore, performed oligonucleotide cataloguing of their 16S rRNA, and found that there was indeed only a similarity of S AB=0.53 between fast- and slowgrowing rhizobia.In conclusion, the results suggest that nif genes may have evolved to a large degree in a similar fashion as the bacteria which carry them. This interpretation would speak against the idea of a recent lateral distribution of nif genes among microorganisms.  相似文献   

19.
Photosynthetic pathways (e.g. C3, C4) and morphological functional types (e.g. trees, shrubs, high perennial grasses, perennial forbs) were identified for the native species from the Saskatchewan mixed prairie, using the data from references published between 1950 and 2003. Of the total 219 identified species in 145 genera and 45 families, 208 species in 137 genera and 44 families were found with C3 photosynthesis, and most of these species are dominants (e.g. Agropyron dasystachyum Hook. and Stipa spartea var. curtiseta Hitchc.). 11 species in 10 genera and 3 families were identified with C4 photosynthesis (e.g. Atriplex argentea Nutt., Andropogon scoparius Michx., Boutelou gracilis Lag., Calamovilfa longifolia Hook.). The amount of total identified C4 species in the region is much less than that from the South Dakota mixed prairie (27 species). Gramineae is the leading family with C4 photosynthesis (8 species), Chenopodiaceae ranks the second (2 species). Relatively less forb types [50 % perennial forbs (PEF) and 12 % annual forbs (ANF)] and more graminoid types (25 %) composition suggested that the rangelands in the region are relatively stable. Lacking of the knowledge on the optimal traits for PFTs classification in the region, further studies (e.g. C3 and C4 plant identification and optimal trait selection) are needed to explore the relationships between PFTs and vegetation variations, as well as land-use and climate changes.  相似文献   

20.
The objective of this study was to isolate and screen the highly efficient copper-removing microorganisms from the petroleum hydrocarbon (PH)-contaminated sites in the Amazonian rain forest in Ecuador. Two bacterial strains (strain UEAB3 and UEAB6) have shown 100% microbial resistance on the nutrient medium containing 100 mM of MgCl2, FeCl3, and Al2(SO4)3 separately. Though these two strains were less tolerant of ZnCl2 and CuSO4.5H2O, they have proven 100% resistance at the lower concentrations of these two metals. According to atomic absorption spectroscopy (AAS) analysis, the filamentous fungi (strains UEAFr and UEAFg) were significantly (p<0.05) effective at bacteria in the biosorption (97–100%) of copper (5 mg L?1) over 7 d. As per 16/18S rDNA sequences, UEAB3, UEAB6, UEAFr, and UEAFg were Bacillus thuringiensis, Bacillus cereus, Geomyces pannorum, and Geomyces sp., respectively. From these results, it can be comprehensively concluded that the isolated microbial cultures had a capacity to remove the copper metal from the liquid medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号