首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在根癌农杆菌介导的Ds转座因子转化的水稻株系中,发现了脆杆突变体bcm581-1.经Basta除草剂抗性检测和PCR检测,这个脆杆突变不是由Ds转座因子插入引起;通过光学显微镜观察发现突变体的小维管束数目多于对照,小维管束之间的凹陷比对照深,而皮层纤维细胞层数少于对照;扫描电镜观察发现突变体表皮细胞外侧的硅质没有对照丰富.虽然,单位面积内的细胞数与对照相近.但是,突变体的细胞壁薄,维管束内纤维细胞壁的加厚程度也低于对照.因此,细胞腔明显比对照大.茎杆的力学测定结果表明突变体的载荷低于对照9.6倍;延伸低5.4倍;延伸率低6.9倍;应力低6倍.茎杆的相对含水量和粗纤维含量测定表明突变体的含水量高于对照3.5%,粗纤维含量则低于对照8.12%.bcm581-1与中花11号杂交试验显示,F1植株全部正常,F2群体中,正常杆和脆杆以31分离,以中花11号为回交亲本的F1B1植株,表现正常;而以脆杆为回交亲本的F1B1植株,正常茎杆和脆杆则以11分离,结果表明bcm581-1的茎杆变脆是受隐性单基因控制的突变.  相似文献   

2.
在根癌农杆菌介导的Ds转座因子转化的水稻株系中,发现了脆杆突变体bcm581-1。经Basta除草剂抗性检测和PCR检测,这个脆杆突变不是由Ds转座因子插入引起;通过光学显微镜观察发现突变体的小维管束数目多于对照,小维管束之间的凹陷比对照深,而皮层纤维细胞层数少于对照;扫描电镜观察发现突变体表皮细胞外侧的硅质没有对照丰富。虽然,单位面积内的细胞数与对照相近。但是,突变体的细胞壁薄,维管束内纤维细胞壁的加厚程度也低于对照。因此,细胞腔明显比对照大。茎杆的力学测定结果表明:突变体的载荷低于对照9.6倍;延伸低5.4倍;延伸率低6.9倍;应力低6倍。茎杆的相对含水量和粗纤维含量测定表明:突变体的含水量高于对照3.5%,粗纤维含量则低于对照8.12%。bcm581-1与中花11号杂交试验显示,F1植株全部正常,F2群体中,正常杆和脆杆以3:1分离,以中花11号为回交亲本的F181植株,表现正常;而以脆杆为回交亲本的F181植株,正常茎杆和脆杆则以1:1分离,结果表明:bcm581-1的茎杆变脆是受隐性单基因控制的突变。  相似文献   

3.
茎秆机械强度影响植株抗倒伏能力, 是备受关注的重要农艺性状之一。与野生型相比, 水稻(Oryza sativa)脆秆隐性突变体bc-s1茎秆抗折力和抗张力分别降低31.1%和67.2%, 茎秆纤维素和木质素含量分别降低24.97%和增高38.82%。细胞学分析显示, bc-s1茎秆厚壁细胞发生不规则变化, 次生壁增厚受阻。通过图位克隆和测序分析, 初步确定bc-s1突变体中纤维素合成酶催化亚基Os09g25490/OsCesA9基因第1外显子的第28个碱基G突变为A。该等位突变体的获得为进一步揭示OsCesA9调控细胞壁建成的生物学功能提供了新的研究材料。  相似文献   

4.
Water movement from the xylem to stomata is poorly understood. There is still no consensus about whether apoplastic or symplastic pathways are more important, and recent work suggests vapour diffusion may also play a role. The objective of this study was to estimate the proportions of hydraulic conductance outside the bundle sheath contributed by apoplastic, symplastic and gas phase pathways, using a novel analytical framework based on measurable anatomical and biophysical parameters. The calculations presented here suggest that apoplastic pathways provide the majority of conductance outside the bundle sheath under most conditions, whereas symplastic pathways contribute only a small proportion. The contributions of apoplastic and gas phase pathways vary depending on several critical but poorly known or highly variable parameters namely, the effective Poiseuille radius for apoplastic bulk flow, the thickness of cell walls and vertical temperature gradients within the leaf. The gas phase conductance should increase strongly as the leaf centre becomes warmer than the epidermis – providing up to 44% of vertical water transport for a temperature gradient of 0.2 K. These results may help to explain how leaf water transport is influenced by light absorption, temperature and differences in leaf anatomy among species.  相似文献   

5.
分析水稻品种‘沈农265’和‘丽江新团黑谷’杂交的F2群体基部第二节间茎秆机械强度与该节间形态和茎秆解剖结构的相关性,并对基部第二节间机械强度和相关性状进行QTL定位的结果表明:机械强度与茎粗、茎壁面积、茎壁厚度、大小维管束数目、大小维管束面积、大小维管束韧皮部面积、大小维管束木质部面积呈显著或极显著的正相关,与节间长度呈极显著的负相关,而与茎秆扁平率的相关不显著。采用复合区间作图,从研究的14个目标性状中检测到18个QTL。控制基部第二节间的抗折力的QTL检测到4个,位于第4、7、9和10号染色体上,可解释遗传变异的12%~23%。在第4和第7染色体上的相同区间上还同时检测到了控制茎壁性状和维管束性状QTL,贡献率在12%~21%之间。说明这两个位点是控制基部第二节间机械强度的重要区域,也是茎壁性状、维管束性状与机械强度高度正相关的遗传学基础。  相似文献   

6.
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. ‘Morex’ were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.  相似文献   

7.
木立芦荟叶的发育解剖学研究   总被引:5,自引:0,他引:5  
应用植物解剖学方法研究了木立芦荟(Aloe arborescens Mill.)叶的发育过程。研究结果表明,叶原基在发育早期其形态是不对称的,内部为同形细胞组成,但很快分化成原表皮,原形成层束和基本分生组织。以后,原表皮发育成表皮,位于原表皮下的2-5层基本分生组织细胞发民同化薄壁组织,而位于中央的基本分生组织细胞则发育成储水薄壁组织,原形成层束发育成维管束。维管束由维管束鞘、木质部、韧皮部和大型薄壁细胞组成。大型薄壁细胞起源于原形成层束,位于韧皮部内,其发育迟于筛管、伴胞,为芦荟属植物叶的结构特征。  相似文献   

8.
刘萍  宋磊  任毅  田先华  张小卉 《西北植物学报》2006,26(11):2208-2213
应用解剖学方法,对铁筷子(Helleborus thibetanusFranch.)(毛茛科)营养器官的结构进行了研究。结果表明,铁筷子根的初生结构观察到三原型、四原型和六原型。营养器官中的维管束在横切面上木质部中的导管分子不呈“V”字形排列;根状茎的次生结构由外向内为表皮、皮层和维管柱,髓射线发达。茎的初生结构中多个维管束排列成环状,维管束鞘分化不明显,节部为单隙三迹,叶迹分别来自于3条维管束或同一条维管束。叶为两面叶,表皮细胞不规则;气孔器只分布于下表皮,为毛茛科典型的无规则型气孔。从铁筷子营养器官的解剖学特点来看,与毛茛科其它植物基本相同,但在营养器官中维管束木质部不呈“V”字形、维管束鞘分化不明显、节部具单叶隙等特征上与其它毛茛科植物不同。  相似文献   

9.
菰(Zizania latifolia)是一种多年生挺水植物,为了探讨该植物根、茎和叶的解剖结构、组织化学及其质外体屏障的通透性生理。该文利用光学显微镜和荧光显微镜,对菰的根、茎、叶进行了解剖学和组织化学研究。结果表明:(1)菰不定根解剖结构由外而内分别为表皮、外皮层、单层细胞的厚壁机械组织层、皮层、内皮层和维管柱;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束的厚壁组织层和髓腔。叶鞘具有表皮和具维管束皮层,叶片具有表皮,叶肉和维管束。(2)不定根具有位于内侧的内皮层及其邻近栓质化细胞和外侧的外皮层组成的屏障结构;茎具内侧厚壁机械组织层,外侧的角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构的细胞壁具凯氏带、木栓质和木质素沉积的组织化学特点,叶表面具有角质层。(3)菰通气组织包括根中通气组织,茎、叶皮层的通气组织和髓腔。(4)菰的屏障结构和解剖结构是其适应湿地环境的重要特征,但其茎周缘厚壁层和厚壁组织层较薄。由此推测,菰适应湿地环境,但在旱生环境中分布有一定的局限性。  相似文献   

10.
The three investigated species of Cyperus L. subgen. Juncellus (Griseb.) C. B. Clarke show anatomical differences in the leaf pertaining to the number of vascular bundles and bundle sheaths, size of silica-cells and their wall thickness, while those of subgen. Mariscus (Gaertner) C. B. Clarke segregate into two primary groups depending on the presence or absence of a distinct hypodermis; and the species within each group are further differentiated on the basis of the presence or absence of air-cavities, the number of vascular bundles and their pattern of arrangement in the leaf. The interspecific differences observed within the genus Lipocarpha R. Br. concern the size of the interstomatal cells and the number of vascular bundles and bundle sheaths of the leaf. Keys for the identification of the species in each genus and subgenus are given separately.  相似文献   

11.
Arabidopsis inflorescence stems develop a vascular pattern similar to that found in most dicots. The arrangement of vascular tissues within the bundle is collateral, and vascular bundles in the stele are arranged in a ring. Although auxin has been shown to be an inducer of vascular differentiation, little is known about the molecular mechanisms controlling vascular pattern formation. By screening ethyl methanesufonate-mutagenized populations of Arabidopsis, we have isolated an avb1 (amphivasal vascular bundle) mutant with a novel vascular pattern. Unlike the collateral vascular bundles seen in the wild-type stems, the vascular bundles in the avb1 stems were similar to amphivasal bundles, i.e. the xylem completely surrounded the phloem. Furthermore, branching vascular bundles in the avb1 stems abnormally penetrated into the pith, which resulted in a disruption in the ring-like arrangement of vascular bundles in the stele. The avb1 mutation did not affect leaf venation pattern and root vascular organization. Auxin polar transport assay indicated that the avb1 mutation did not disrupt the auxin polar transport activity in inflorescence stems. The avb1 mutation also exhibited pleiotropic phenotypes, including curled stems and extra cauline branches. Genetic analysis indicated that the avb1 mutation was monogenic and partially dominant. The avb1 locus was mapped to a region between markers mi69 and ASB2, which is covered by a yeast artificial chromosome clone, CIC9E2, on chromosome 5. Isolation of the avb1 mutant provides a novel means to study the evolutionary mechanisms controlling the arrangement of vascular tissues within the bundle, as well as the mechanisms controlling the arrangement of vascular bundles in the stele.  相似文献   

12.
Diploid wheat, Triticum monococcum L. (einkorn) is an ideal plant material for wheat functional genomics. Brittle culm mutant was identified by screening of the ethyl methane sulphonate-treated M 2 progenies of a T. monococcum accession pau14087 by banding the plant parts manually. The brittle culm mutant with drooping leaves, early flowering, reduced tiller numbers and susceptible to lodging had also exhibited brittleness in all plant parts than the wild-type parents. Comprehensive mechanical strength, histological, biochemical, scanning electron microscopy, and Fourier transform infrared spectroscopy analyses of brittle culm mutant supplemented and complemented the findings that the mutant had defective cellulose biosynthesis pathway and deposition of cell wall materials on secondary cell wall of mechanical tissues. Microscopic studies demonstrated that the decrease in cellulose contents resulted in the irregular cell wall organization in xylem vessels of leaf vascular bundles. To map the brc5 mutant, mapping populations were developed by crossing the brittle culm mutant with wild Triticum boeoticum acc. pau5088, having non-brittle characters. The brittle culm mutation was mapped between SSR markers, Xcfd39 and Xgwm126 on 5AmL chromosome of T. monococcum, with genetic distances of 2.6 and 4.8 cM, respectively. The brc5 mutant mapped on 5AmL, being distinct from a previously mapped brittle culm mutant in wheat, has been designated as brc5. The work on fine mapping and map-based cloning of brc5 gene regulating synthesis and deposition of cellulose on the secondary cell wall is in progress.  相似文献   

13.
The morphology, anatomy and vasculature of Pinus leaves was studied. The results indicate that the Pinus leaf is always supplied with only one single vascular bundle, which is surrounded by a prominent bundle sheath. In several taxa, especially of subgenus Pinus, the vascular bundle may however be subdivided by longitudinal parenchymatic bands in the middle part of the leaf. As a result, the single bundle gets the appearance of two individual bundles, which are surrounded by a common bundle sheath. The general rule that a bundle sheath does sheath only one single bundle, as in other gymno- and angiospermous seed plants, applies therefore also for Pinus. The morphological and anatomical similarities between cladodes of Sciadopitys (Sciadopityaceae) and Pinus leaves are based on a completely different bauplan. The idea of “hidden cladodes” in some Pinaceae is therefore obsolete.  相似文献   

14.
A wilty mutant of rice has impaired hydraulic conductance   总被引:1,自引:0,他引:1  
The rice CM2088 mutant is the wilty phenotype and wilts markedly under well-watered sunny conditions. The leaf water potential and epidermal (mainly stomatal) conductance of CM2088 plants decreased significantly under conditions that induced intense transpiration, as compared with those of wild-type plants, revealing that the wilty phenotype was not the result of abnormal stomatal behavior but was due to an increase in resistance to water transport. The resistance to water transport was dramatically elevated in the node and the sheath and blade of a leaf of the mutant, but not in the root or stem. The diameter of xylem vessels in the large vascular bundles of the leaf sheath and the internode tended to be small, and the numbers of vessel elements with narrowed or scalariform perforation plates in the leaf blade and sheath were greater in the mutant than in the wild type. Most xylem vessels were occluded, with air bubbles in the leaf sheath of the mutant during the midday hours under intense transpiration conditions, while no bubbles were observed in plants that were barely transpiring, revealing that the significant increase in resistance to water transport was a result of the cavitation. The additive effects of cavitation in xylem vessels and the decreased diameter and deformed plates of vessel elements might be responsible for the wilty phenotype of CM2088.  相似文献   

15.
9种芦荟属植物叶的结构和芦荟素含量的比较研究   总被引:21,自引:2,他引:21  
沈宗根  Yitzchak  GUTTERMAN 《西北植物学报》2001,21(2):278-286,T001
9种芦荟属植物叶的比较解剖研究结果表明,它们都具有明显的旱生叶的结构特征,其维管束的韧皮部内都有大型薄壁细胞,但其表皮角质膜的厚度,表面纹饰,气孔上,下腔的形状和大小,同化组织 导 ,细胞分化情况,维管束的大小,分布密度和其大型薄壁细胞占维管束的比例,中央贮水组织占叶横切面的比例等特征,在各种间存在差异,且性状稳定,可以作为该属内种间分类的解剖学指标,植物化学分析结果表明,9种植物叶内蒽醌类物质的主要种类和含量不同,其含量高,低与叶内维管束密度,大型薄壁细胞占维管束的比例以及同化组织的厚度密度切相关,从而为芦荟属植物选育商业用良种提供了植物解剖学依据。  相似文献   

16.
《Flora》2006,201(7):555-569
We investigated the anatomical and chemical characteristics of the foliar vascular bundles in four ecotypes of common reed (Phragmites communis Trin.) inhabiting the desert region of northwest China: swamp reed (SR), low-salt meadow reed (LSMR), high-salt meadow reed (HSMR), and dune reed (DR). The cell walls of the vascular systems of all four ecotypes exhibited bright autofluorescence. Compared to SR, the three terrestrial ecotypes, LSMR, HSMR and DR, had higher percentages of bundle sheath cell areas, lower percentages of xylem and phloem areas, lower xylem/phloem ratios, and higher frequencies of leaf veins. In addition to differences in the autofluorescence intensity and the morphology of the detached cell walls of the vascular bundle sheath, the three terrestrial ecotypes also exhibited anatomical differences in the outerface tangential walls of the bundle sheath and higher frequencies of pit fields in the walls in comparison to SR. The Fourier transform infrared (FTIR) microspectroscopy spectra of the vascular bundle cell walls differed greatly among the tissues of the different ecotypes as well as within different tissues within each ecotype. Histochemical methods revealed that although pectins were present in all bundle tissue cell walls, large amounts of unesterified pectin were present in the phloem cell walls, especially in the salt reed ecotypes LSMR and HSMR, and large quantities of highly methyl-esterified pectin were present in the xylem and sclerenchyma cell walls of the SR and DR ecotypes. Differences were observed in the lignification and suberization of the xylem and sclerenchyma cell walls of the four ecotypes, but the phloem and bundle sheath cell walls were generally similar. These results suggest that the adaptation of common reed, a hydrophytic species, to saline or drought-prone dunes triggers changes in the anatomical and chemical characteristics of the foliar vascular bundle tissues. These alterations, including higher percentages of bundle sheath areas and lower percentages of xylem and phloem areas and their ratios, changes in the chemical compositions and modifications of the cell walls of different vascular bundle tissues, and differences in the deposition of major cell wall components in the walls of different vascular bundle tissues, could contribute to the high resistance of reeds to extreme habitats such as saline and drought-prone dunes.  相似文献   

17.
巨龙竹(Dendrocalamus sinicus Chia et J.L.Sun)是云南特有的珍稀木本丛生竹,其秆形分为通直型和弯曲型两种变型。为了揭示巨龙竹不同秆形的组织结构特征,本文通过定点观测0~49 d的巨龙竹笋和幼竹生长发育状况,并采用石蜡切片技术对笋期0~45 d内样品的组织结构进行比较解剖学研究。结果显示:(1)巨龙竹在笋-幼竹(0~49 d)发育期,秆高生长呈"慢-快"的趋势,21~35 d时弯曲型茎秆开始显现,易于辨别;(2)5~30 d时,弯曲型茎秆中维管束的发育早于通直型;对比弯曲型茎秆内外两侧维管束,内侧维管束导管内径较小,但纤维鞘中的纤维细胞层数更多;(3)弯曲型茎秆中薄壁细胞的分化早于通直型,20 d后弯曲型茎秆中的薄壁细胞出现明显的可被番红-固绿染色的细胞核,并呈有规律的排列;弯曲型茎秆内侧薄壁细胞稍小于外侧薄壁细胞,但内侧被染色细胞核的薄壁细胞多于外侧。研究结果表明巨龙竹弯曲型茎秆性状在笋期第21~35 d内即可通过茎秆形态判别,弯曲型茎秆中维管束的发育以及薄壁细胞分化均早于通直型茎秆,同一时期弯曲型茎秆内侧细胞分裂较外侧旺盛、维管束木质化程度更高。  相似文献   

18.
巨龙竹( Dendrocalamus sinicus Chia et J. L. Sun)是云南特有的珍稀木本丛生竹,其秆形分为通直型和弯曲型两种变型。为了揭示巨龙竹不同秆形的组织结构特征,本文通过定点观测0 ~ 49 d的巨龙竹笋和幼竹生长发育状况,并采用石蜡切片技术对笋期0 ~ 45 d内样品的组织结构进行比较解剖学研究。结果显示:(1)巨龙竹在笋-幼竹(0 ~ 49 d)发育期,秆高生长呈“慢-快”的趋势,21 ~ 35 d时弯曲型茎秆开始显现,易于辨别;(2)5 ~ 30 d时,弯曲型茎秆中维管束的发育早于通直型;对比弯曲型茎秆内外两侧维管束,内侧维管束导管内径较小,但纤维鞘中的纤维细胞层数更多;(3)弯曲型茎秆中薄壁细胞的分化早于通直型,20 d后弯曲型茎秆中的薄壁细胞出现明显的可被番红-固绿染色的细胞核,并呈有规律的排列;弯曲型茎秆内侧薄壁细胞稍小于外侧薄壁细胞,但内侧被染色细胞核的薄壁细胞多于外侧。研究结果表明巨龙竹弯曲型茎秆性状在笋期第21 ~ 35 d内即可通过茎秆形态判别,弯曲型茎秆中维管束的发育以及薄壁细胞分化均早于通直型茎秆,同一时期弯曲型茎秆内侧细胞分裂较外侧旺盛、维管束木质化程度更高。  相似文献   

19.
Qi J  Qian Q  Bu Q  Li S  Chen Q  Sun J  Liang W  Zhou Y  Chu C  Li X  Ren F  Palme K  Zhao B  Chen J  Chen M  Li C 《Plant physiology》2008,147(4):1947-1959
The size and shape of the plant leaf is an important agronomic trait. To understand the molecular mechanism governing plant leaf shape, we characterized a classic rice (Oryza sativa) dwarf mutant named narrow leaf1 (nal1), which exhibits a characteristic phenotype of narrow leaves. In accordance with reduced leaf blade width, leaves of nal1 contain a decreased number of longitudinal veins. Anatomical investigations revealed that the culms of nal1 also show a defective vascular system, in which the number and distribution pattern of vascular bundles are altered. Map-based cloning and genetic complementation analyses demonstrated that Nal1 encodes a plant-specific protein with unknown biochemical function. We provide evidence showing that Nal1 is richly expressed in vascular tissues and that mutation of this gene leads to significantly reduced polar auxin transport capacity. These results indicate that Nal1 affects polar auxin transport as well as the vascular patterns of rice plants and plays an important role in the control of lateral leaf growth.  相似文献   

20.
The vascular system of the Hordeum vulgare L. leaf consists of multiple longitudinal strands interconnected by transverse bundles. In any transverse section, the longitudinal strands can be categorized into three bundle types: small, intermediate, and large. Individual longitudinal strands intergrade structurally from one bundle type into another as they descend the leaf. At their distal ends, they have the anatomy of a small bundle. As they descend the leaf, most intergrade into intermediate bundle and then into large bundle types. All strands with large bundle anatomy extend basipetally into the stem. Typically, the other longitudinal strands, which do not intergrade structurally into large bundles, do not enter the sheath, but fuse with other longitudinal strands above the junction of the blade with the sheath. Despite the decrease in number of longitudinal bundles entering the sheath, an increase takes place in the total crosssectional area of sieve tubes and tracheary elements. A linear relationship exists between leaf width and total bundle number in the blade but not in the sheath. Moreover, a linear relationship exists between cross-sectional area of vascular bundles and both total and mean cross-sectional area of tracheary elements and thin-walled sieve tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号