首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria associated with toxic dinoflagellates have been implicated in the production of paralytic shellfish poisoning (PSP) toxins, but it has not been substantiated that bacteria are truly capable of autonomous PSP toxin synthesis or what role bacteria may play in shellfish toxification. In this study, different putatively PSP toxin producing bacteria originally isolated from toxic Alexandrium spp. were exposed to the blue mussel Mytilus edulis. To document that these bacteria accumulated in the digestive tract of the mussels, hybridization techniques that use rRNA targeted oligonuceotides for in situ identification of these bacteria were applied. The mussel hepatopancreas was dissected and paraffin and frozen sections were made. The dissected glands were hybridized with digoxigenin-labelled 16S rRNA oligonucleotide probes. Results demonstrate that mussels will readily uptake and accumulate these bacteria in the hepatopancreas. However, the mussels were not rendered toxic by the ingestion of the bacteria as determined by HPLC with UV detection for PSP toxins and determination of sodium channel blocking activity using the mouse neuroblastoma assay. Thus, although the role that bacteria play in mussel toxification remains unclear, methods are now available which will aid in further investigation of this relatively unexplored area.  相似文献   

2.
The toxins associated with paralytic shellfish poisoning (PSP) are potent neurotoxins produced by natural populations of the marine dinoflagellate Alexandrium tamarense. In early June 2000, a massive bloom (>7×105 cells l−1) of this dinoflagellate coincided with an unusually high mortality of farmed salmon in sea cages in southeastern Nova Scotia. Conditions in the water column in the harbour were characterised by the establishment of a sharp pycnocline after salinity stratification due to abundant freshwater runoff. In situ fluorescence revealed a high sub-surface (2–4 m depth) chlorophyll peak related to the plankton bloom. The intense bloom was virtually monospecific and toxicity was clearly related to the concentration of Alexandrium cells in plankton size fractions. Cultured clonal isolates of A. tamarense from the aquaculture sites were very toxic on a per cell basis and yielded a diversity of PSP toxin profiles, some of which were similar to those from plankton concentrates from the natural bloom population. The toxin profile of plankton concentrates from the 21–56 μm size fraction was complex, dominated by the N-sulfocarbamoyl derivative C2, with levels of other PSP toxins GTX4, NEO, GTX5 (=B1), GTX3, GTX1, STX, C1, and GTX2, in decreasing order of relative abundance. Although no PSP toxin was found systemically in the fish tissues (liver, digestive tract) from this salmon kill event, the detection of Alexandrium cells and low levels of PSP toxins in salmon gills provide evidence that the enhanced mortalities were caused by direct exposure to toxic Alexandrium cells and/or to soluble toxins released during the bloom.  相似文献   

3.
The genetic diversity of the bacterial community associated with Alexandrium tamarense blooms was studied in blooms of the toxic dinoflagellates in the waters around the Orkney Isles and the Firth of Forth (Scotland). For toxin and molecular analysis of the bacterial communities associated with the toxic bloom, water samples were taken in 1998 and 1999 from A. tamarense blooms. The bacterial community structure, as determined by DGGE (denaturing gradient gel electrophoresis) showed clear differences between all three investigated size fractions (dinoflagellate-associated bacteria, attached bacteria and free-living bacteria), with high diversity within each sample. DNA sequence analysis of the dominant and most frequent DGGE bands revealed the dominance of Proteobacteria, mainly of the Roseobacter clade, with similarities of 91–99%. Moreover, DGGE bands occurring at the same position in the gel throughout in most samples corroborate the presence of several specific Proteobacteria of the Roseobacter clade. Overall, 500 bacteria were isolated from the bloom and partly phylogenetically analysed. They were members of two prokaryotic phyla, the Proteobacteria and the Bacteroidetes, related to Proteobacteria of the and subdivisions (Alteromonas, Pseudoalteromonas and Colwellia). All bacteria were tested for the production of sodium channel blocking (SCB) toxins using mouse neuroblastoma assay. No production of SCB toxins was found and high performance liquid chromatography (HPLC) analysis confirmed these results. The content of total paralytic shellfish poisoning (PSP) toxin in the water samples, as measured within the toxic dinoflagellate blooms using HPLC, ranged from 53 to 2191 ng PSP l–1 in 1998 and from 0 to 478 ng PSP l–1 in 1999. Changes in PSP toxin content were not accompanied by changes of DGGE band patterns. We therefore presume that the bacterial groups identified in this study were not exclusively associated with toxic A. tamarense, but were generally associated with the phytoplankton.An erratum to this article can be found at Communicated by H.-D. Franke  相似文献   

4.
Members of the Amoebophrya ceratii complex are endoparasitic dinoflagellates that parasitize a number of their dinoflagellate relatives, including toxic and/or harmful algal bloom-forming species. Despite many studies on the occurrence, prevalence, biology and molecular phylogeny of Amoebophrya spp., little attention has been given to toxin dynamics of host population following parasitism. Using Amoebophrya sp. infecting the paralytic shellfish toxin (PSP)-producing dinoflagellate Alexandrium fundyense, we addressed the following questions: (1) does parasitism by Amoebophrya sp. alter toxin content and toxin profiles of the dinoflagellate A. fundyense over the infection cycle? and (2) do parasite dinospores produced at the end of the infection cycle retain host toxins and thus potentially act as a vector to convey PSP toxin through the marine microbial food-web? Toxin time-course experiments showed that the PSP toxin contents did not vary significantly over the infection cycle, but mean toxin content for infected cultures was significantly higher than that for uninfected cultures. Host toxins were not detected in the free-living, dinospore stage of the parasite. Therefore, our results indicate that Amoebophrya sp. does not function as a vector for transferring PSP toxins to higher trophic levels. Rather, Amoebophrya infections appear to play an important role in maintaining healthy ecosystems by transforming potent toxins-producing dinoflagellates into non-toxic dinospores, representing “edible food” for consumers of the marine microbial food-web during toxic algal bloom event.  相似文献   

5.
The genetic diversity of the bacterial community associated with Alexandrium tamarense blooms was studied in blooms of the toxic dinoflagellates in the waters around the Orkney Isles and the Firth of Forth (Scotland). For toxin and molecular analysis of the bacterial communities associated with the toxic bloom, water samples were taken in 1998 and 1999 from A. tamarense blooms. The bacterial community structure, as determined by DGGE (denaturing gradient gel electrophoresis) showed clear differences between all three investigated size fractions (dinoflagellate-associated bacteria, attached bacteria and free-living bacteria), with high diversity within each sample. DNA sequence analysis of the dominant and most frequent DGGE bands revealed the dominance of α Proteobacteria, mainly of the Roseobacter clade, with similarities of 91–99%. Moreover, DGGE bands occurring at the same position in the gel throughout in most samples corroborate the presence of several specific α Proteobacteria of the Roseobacter clade. Overall, 500 bacteria were isolated from the bloom and partly phylogenetically analysed. They were members of two prokaryotic phyla, the Proteobacteria and the Bacteroidetes, related to Proteobacteria of the α and γ subdivisions (Alteromonas, Pseudoalteromonas and Colwellia). All bacteria were tested for the production of sodium channel blocking (SCB) toxins using mouse neuroblastoma assay. No production of SCB toxins was found and high performance liquid chromatography (HPLC) analysis confirmed these results. The content of total paralytic shellfish poisoning (PSP) toxin in the water samples, as measured within the toxic dinoflagellate blooms using HPLC, ranged from 53 to 2191 ng PSP l?1 in 1998 and from 0 to 478 ng PSP l?1 in 1999. Changes in PSP toxin content were not accompanied by changes of DGGE band patterns. We therefore presume that the bacterial groups identified in this study were not exclusively associated with toxic A. tamarense, but were generally associated with the phytoplankton.  相似文献   

6.
The presence of intracellular bacteria in the dinoflagellate Gyrodinium instriatum Freudenthal & Lee has previously been described but the bacterial flora associated with this species has not been characterized. In this study, new results of transmission electron microscopy (TEM) and in situ hybridization using several bacterial group-specific oligonucleotide probes are presented. The long-term association of endocytoplasmic and endonuclear bacteria with G. instriatum has been confirmed. All endonuclear and most of the endocytoplasmic bacteria labelled were identified as belonging to the betaproteobacteria. Large clusters of Cytophaga-Flavobacterium-Bacteroides (CFB) were labelled and observed in the cytoplasm of the dinoflagellate cells, but were absent from the nucleus. Gammaproteobacteria were only observed outside the dinoflagellates. No alphaproteobacteria were detected either free-living or intracellular. Empirical observation of intracellular CFB reflected a degradation process of moribund dinoflagellate cells, whereas the systematic colonization of dinoflagellate nucleoplasm by betaproteobacteria suggested a true symbiotic relationship. Natural colonization may have occurred, perpetuated by vertical transmission of intracellular bacteria to the dinoflagellate daughter cells, via a pool of bacteria sequestered within the nucleus. Dividing bacteria were observed in the nucleus and equilibrium may be maintained by release of endonuclear bacteria to the cytoplasm through nuclear envelope constrictions.  相似文献   

7.
Marine algal toxins are an important cause of seafood-associated outbreaks. Some marine bacteria living in association with algae are able to produce channel-blocking substances similar to PSP and TTX toxins and a role of these bacteria in the toxicity of dinoflagellates has been hypothesized. The aim of this study was to monitor, over a period of 2 years, areas used in shellfish production in the northern Adriatic Sea, through the determination of phytoplankton and the characterization of bacteria isolated from algae. Toxicity tests on bacterial extracts were performed using in vivo (mouse) and in vitro (cell culture) tests and by HPLC. The Dinophysis genus was detected throughout the year, while the Alexandrium genus was present in winter and spring. Sixteen bacteria isolated from algae, out of 61 bacterial strains tested by in vitro assay, were found to be producers of toxic substances that could block sodium channels in cells. HPLC analysis for the detection of PSP and TTX toxins always gave negative results, but their presence in concentrations undetectable by HPLC, and/or the production of chemically different substances with similar biological action, could not be excluded.  相似文献   

8.
9.
It is becoming increasingly clear that bacteria can play an important role in the toxin and population dynamics of harmful algal bloom (HAB) events. In this paper, we document protocols and strategies that can be used to identify bacterial genes involved in either the production of toxic compounds and/or the establishment and maintenance of relationships between bacteria and algae. The protocols we tested involved transposon mutagenesis and complementation with broad-host-range plasmids. We tested six bacterial strains thought to be involved, either directly or indirectly, in the production of toxins associated with paralytic shellfish poisoning (PSP). Five strains were resistant to transformation under the growth conditions used. However, a single strain, Pseudomonas stutzeri SF/PS, was readily transformed when grown under appropriate conditions. This bacterium has been shown to accumulate PSP toxins and to increase toxin production when added to axenic cultures of a toxic dinoflagellate, Alexandrium lusitanicum . We conclude that a transposon mutagenesis strategy can be used to identify genes involved in HAB events.  相似文献   

10.
The profile of tetrahydropurine neurotoxins associated with paralytic shellfish poisoning (PSP) was determined from a Chilean strain of the marine dinoflagellate Alexandrium catenella. The toxin composition was compared with that of toxic shellfish, presumably contaminated by natural blooms of A. catenella from the same region in southern Chile. Ion pair-liquid chromatography with post-column derivatization and fluorescence detection (LC-FD) was employed for relative quantitative analysis of the toxin components, whereas unambiguous identification of the toxins was confirmed by tandem mass spectrometry (LC–MS/MS). In the dinoflagellate strain from Chile, the N-sulfocarbamoyl derivatives (C1/C2, B1) and the carbamoyl gonyautoxins GTX1/GTX4 comprise >90% of the total PSP toxin content on a molar basis. This toxin composition is consistent with that determined for A. catenella populations from the Pacific coast in the northern hemisphere. The characteristic toxin profile is also reflected in the shellfish, but with evidence of epimerization and metabolic transformations of C1 and C2 to GTX2 and GTX3, respectively. This work represents the first unequivocal identification and confirmation of such PSP toxin components from the Chilean coast.  相似文献   

11.
In the marine environment, phytoplankton and bacterioplankton can be physically associated. Such association has recently been hypothesized to be involved in the toxicity of the dinoflagellate genus Alexandrium. However, the methods, which have been used so far to identify, localize, and quantify bacteria associated with phytoplankton, are either destructive, time consuming, or lack precision. In the present study we combined tyramide signal amplification–fluorescent in situ hybridization (TSA‐FISH) with confocal microscopy to determine the physical association of dinoflagellate cells with bacteria. Dinoflagellate attached microflora was successfully identified with TSA‐FISH, whereas FISH using monolabeled probes failed to detect bacteria, because of the dinoflagellate autofluorescence. Bacteria attached to entire dinoflagellates were further localized and distinguished from those attached to empty theca, by using calcofluor and DAPI, two fluorochromes that stain dinoflagellate theca and DNA, respectively. The contribution of specific bacterial taxa of attached microflora was assessed by double hybridization. Endocytoplasmic and endonuclear bacteria were successfully identified in the nonthecate dinoflagellate Gyrodinium instriatum. In contrast, intracellular bacteria were not observed in either toxic or nontoxic strains of Alexandrium spp. Finally, the method was successfully tested on natural phytoplankton assemblages, suggesting that this combination of techniques could prove a useful tool for the simultaneous identification, localization, and quantification of bacteria physically associated with dinoflagellates and more generally with phytoplankton.  相似文献   

12.
The composition of paralytic shellfish toxins in the marine dinoflagellate Alexandrium ostenfeldii (Paulsen) Balech et Tangen grown in unialgal culture was determined by high-performance liquid chromatography. The toxin profile revealed that the low-potency sulfamate toxin B2 was dominant (90 molar % of total toxins), but small amounts of the weakly toxic 21-N-sulfocarbamoyl derivatives C1+2 and trace amounts of the carbamate toxins GTX2 and GTX3 were also present. The mammalian toxicity was confirmed by a modification of the conventional AOAC mouse bioassay (0.6–1.4 pg STXeq· cell-1). The acute toxicity to a potential predator, the tintinnid ciliate Favella ehrenbergi (Clap, et Lach.) Jörg., was also investigated. The ciliate was able to graze on A. ostenfeldii when the cell concentration of the dinoflagellate was low (<2000 cells · mL-1). At higher concentrations the ciliate was affected by exudates (presumably PSP toxins) that induced backward swimming followed by swelling and lysis of the cell. Fluorescence microscopy of calcofluor-stained cells was employed as an easy and rapid method to identify this and other thecate dinoflagellates.  相似文献   

13.
The comprehension of microbial interactions is one of the key challenges in marine microbial ecology. This study focused on exploring chemical interactions between the toxic dinoflagellate Prorocentrum lima and a filamentous fungal species, Aspergillus pseudoglaucus, which has been isolated from the microalgal culture. Such interspecies interactions are expected to occur even though they were rarely studied. Here, a co-culture system was designed in a dedicated microscale marine-like condition. This system allowed to explore microalgal–fungal physical and metabolic interactions in presence and absence of the bacterial consortium. Microscopic observation showed an unusual physical contact between the fungal mycelium and dinoflagellate cells. To delineate specialized metabolome alterations during microalgal–fungal co-culture metabolomes were monitored by high-performance liquid chromatography coupled to high-resolution mass spectrometry. In-depth multivariate statistical analysis using dedicated approaches highlighted (1) the metabolic alterations associated with microalgal–fungal co-culture, and (2) the impact of associated bacteria in microalgal metabolome response to fungal interaction. Unfortunately, only a very low number of highlighted features were fully characterized. However, an up-regulation of the dinoflagellate toxins okadaic acid and dinophysistoxin 1 was observed during co-culture in supernatants. Such results highlight the importance to consider microalgal–fungal interactions in the study of parameters regulating toxin production.  相似文献   

14.
The toxic dinoflagellate Alexandrium fundyense is widespread in the northeastern part of North America, including the Gulf of Maine, and is responsible for seasonal harmful algal blooms in these regions. Even at low cell densities, A. fundyense toxins can accumulate in shellfish and result in paralytic shellfish poisoning (PSP). PSP can be debilitating or lethal to humans and other shellfish consumers and is a public health concern. As a result, accurate measurements of A. fundyense distributions, particularly at low cell density, are critical to continued PSP monitoring and mitigation efforts. Towards this end we have developed a real-time quantitative PCR (qPCR) method to monitor A. fundyense. Laboratory validation indicates that the qPCR assay is sensitive enough to detect 10 cells per sample, and that it does not detect co-occurring dinoflagellates such as Alexandrium ostenfeldii. The qPCR methodology was used to quantify A. fundyense cell densities in samples collected during a spring 2003 transect in the Gulf of Maine, and the data were compared to those obtained in parallel from light microscope and DNA hybridization-based methods. Results show that A. fundyense cell density was low during this period relative to typical cell densities required for PSP contamination of local shellfish, and that qPCR values were comparable to numbers determined by independent methods.  相似文献   

15.
The variability of toxigenic phytoplankton and the consequent uptake and loss of toxins by the mussel Choromytilus meridionalis was investigated in the southern Benguela at the event scale (3–10 days) in response to the upwelling–downwelling cycle. Phytoplankton and mussel samples were collected daily (20 March–11 April 2007) from a mooring station (32.04°S; 18.26°E) located 3.5 km offshore of Lambert's Bay, within the St Helena Bay region. Rapid changes in phytoplankton assemblages incorporated three groups of toxigenic phytoplankton: (1) the dinoflagellate Alexandrium catenella; (2) several species of Dinophysis, including Dinophysis acuminata, Dinophysis fortii, Dinophysis hastata and Dinophysis rotundata; and (3) members of the diatom genus Pseudo-nitzschia. Analysis of phytoplankton concentrates by LC–MS/MS or LC-FD provided information on the toxin composition and calculated toxicity of each group. Several additional in vitro assays were used for the analysis of toxins in mussels (ELISA, RBA, MBA for PSP toxins; and ELISA for DSP toxins). Good correspondence was observed between methods except for the MBA, which provided significantly lower (approximately 2-fold) estimates of PSP toxins. PSP and DSP toxins both exceeded the regulatory limits in Choromytilis meridionalis, but ASP toxins were undetected. Differences were observed in the composition of both PSP and DSP toxins in C. meridionalis from that of the ingested dinoflagellates (PSP toxins showed an increase in STX, C1,2, and traces of dcSTX and GTX1,4 and a decrease in NEO; DSP toxins showed an increased in DTX1, and traces of PTX2sa, and a decrease in OA). The rate of loss of PSP toxins following dispersal of the A. catenella boom was 0.12 d−1. Variation in the loss rates of different PSP toxins contributed to the change in toxin profile in C. meridionalis. Prediction of net toxicity in shellfish of the nearshore environment in the southern Benguela is limited due to rapid phytoplankton community changes, high variability in cellular toxicity, and the selective uptake and loss of toxins, and/or transformation of toxins.  相似文献   

16.
In California, the toxic algal species of primary concern are the dinoflagellate Alexandrium catenella and members of the pennate diatom genus Pseudo-nitzschia, both producers of potent neurotoxins that are capable of sickening and killing marine life and humans. During the summer of 2004 in Monterey Bay, we observed a change in the taxonomic structure of the phytoplankton community—the typically diatom-dominated community shifted to a red tide, dinoflagellate-dominated community. Here we use a 6-year time series (2000–2006) to show how the abundance of the dominant harmful algal bloom (HAB) species in the Bay up to that point, Pseudo-nitzschia, significantly declined during the dinoflagellate-dominated interval, while two genera of toxic dinoflagellates, Alexandrium and Dinophysis, became the predominant toxin producers. This change represents a shift from a genus of toxin producers that typically dominates the community during a toxic bloom, to HAB taxa that are generally only minor components of the community in a toxic event. This change in the local HAB species was also reflected in the toxins present in higher trophic levels. Despite the small contribution of A. catenella to the overall phytoplankton community, the increase in the presence of this species in Monterey Bay was associated with an increase in the presence of paralytic shellfish poisoning (PSP) toxins in sentinel shellfish and clupeoid fish. This report provides the first evidence that PSP toxins are present in California's pelagic food web, as PSP toxins were detected in both northern anchovies (Engraulis mordax) and Pacific sardines (Sardinops sagax). Another interesting observation from our data is the co-occurrence of DA and PSP toxins in both planktivorous fish and sentinel shellfish. We also provide evidence, based on the statewide biotoxin monitoring program, that this increase in the frequency and abundance of PSP events related to A. catenella occurred not just in Monterey Bay, but also in other coastal regions of California. Our results demonstrate that changes in the taxonomic structure of the phytoplankton community influences the nature of the algal toxins that move through local food webs and also emphasizes the importance of monitoring for the full suite of toxic algae, rather than just one genus or species.  相似文献   

17.
Mussels (Mytilus galloprovincialis) were experimentally contaminated with paralytic shellfish poisoning (PSP) toxins by being fed with the toxic dinoflagellate Alexandrium tamarense, and changes in toxin content and specific composition during the decontamination period were analyzed by high-performance liquid chromatography (HPLC). Toxins excreted by the mussels into the seawater were also recovered using an activated charcoal column and analyzed by HPLC. The predominant toxins in A. tamarense, mussels, and seawater were the N-sulfocarbamoyl-11-hydrosulfate toxins (C1,2) and carbamate gonyautoxins-1,4 (GTX1,4). There were no remarkable differences in the relative proportions of the predominant toxins within A. tamarense, mussels and seawater. Because the relative proportion of the various toxin analogues excreted by the mussels was similar to that within their tissues during detoxification, it appeared that the selective release of particular toxins by the mussels was unlikely. The total amount of toxin lost from mussels was nearly equal to that which was found dissolved in the seawater, suggesting that, at least the early stages of mussel detoxification, most losses can be accounted for by excretion.  相似文献   

18.
Summary An efficient fermentation method for the production of two modified recombinant Pseudomonas aeruginosa exotoxin As cloned in Escherichia coli BL21(DE3) was developed. Cell densities of 16–30 g dry weight/l were found to be most suitable for the induction of protein synthesis, which was under the isopropyl \-d-thiogalactopyranoside (IPTG)-inducible T7 expression system. A concentration of 0.6 mm IPTG and induction time of 90 min were found to give the best results for production of the modified toxins. Using this procedure, gram amounts of the proteins were obtained in a 3-1 bench-top fermentor. The high density growth of the bacteria did not impair the integrity of the proteins and did not interfere with the purification procedure. Offsprint requests to: J. Shiloach  相似文献   

19.
Alexandrium ostenfeldii is present in a wide variety of environments in coastal areas worldwide and is the only dinoflagellate known species that produces paralytic shellfish poisoning (PSP) toxins and two types of cyclic imines, spirolides (SPXs) and gymnodimines (GYMs). The increasing frequency of A. ostenfeldii blooms in the Baltic Sea has been attributed to the warming water in this region. To learn more about the optimal environmental conditions favoring the proliferation of A. ostenfeldii and its complex toxicity, the effects of temperature and salinity on the kinetics of both the growth and the net toxin production of this species were examined using a factorial design and a response-surface analysis (RSA). The results showed that the growth of Baltic A. ostenfeldii occurs over a wide range of temperatures and salinities (12.5–25.5°C and 5–21, respectively), with optimal growth conditions achieved at a temperature of 25.5°C and a salinity of 11.2. Together with the finding that a salinity > 21 was the only growth-limiting factor detected for this strain, this study provides important insights into the autecology and population distribution of this species in the Baltic Sea. The presence of PSP toxins, including gonyautoxin (GTX)-3, GTX-2, and saxitoxin (STX), and GYMs (GYM-A and GYM-B/-C analogues) was detected under all temperature and salinity conditions tested and in the majority of the cases was concomitant with both the exponential growth and stationary phases of the dinoflagellate’s growth cycle. Toxin concentrations were maximal at temperatures and salinities of 20.9°C and 17 for the GYM-A analogue and > 19°C and 15 for PSP toxins, respectively. The ecological implications of the optimal conditions for growth and toxin production of A. ostenfeldii in the Baltic Sea are discussed.  相似文献   

20.
Short-term experiments showed that ingestion rates of the copepods Acartia grani and Euterpina acutifrons on different concentrations of the dinoflagellate Gyrodinium corsicum were not usually different from those obtained with the non-toxic and similar sized Prorocentrum triestinum. Long-term experiments showed that no A. grani survived for more than 288 h on concentrated cultures (1500 μg C l−1) of G. corsicum compared with survival rates of 86.7% on the non-toxic P. triestinum. In contrast high and similar survival rates were found for E. acutifrons exposed for the same time to similar concentrations of both dinoflagellates. These results demonstrated that G. corsicum produce toxins which have significant adverse effects on the long-term survival rates of some copepods like A. grani but not on other copepods like E. acutifrons. The possibility of PSP-toxin production by G. corsicum was analysed by chromatographic analysis (HPLC-FD) and mouse bioassay of extracts obtained from cultures maintained in exponential growth phase in f/2-Si and L1 culture mediums. These analyses and the bioassay ruled out the presence of PSP toxins in this dinoflagellate. However, mouse tests provided the first evidence for the presence of some type of NSP toxin in G. corsicum. Haemolytic assays also gave the first positive results for the methanol extract of this dinoflagellate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号