首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Whole ecosystem CO2 flux under ambient (340 l/l) and elevated (680 l/l) CO2 was measured in situ in Eriophorum tussock tundra on the North Slope of Alaska. Elevated CO2 resulted in greater carbon acquisition than control treatments and there was a net loss of CO2 under ambient conditions at this upland tundra site. These measurements indicate a current loss of carbon from upland tundra, possibly the result of recent climatic changes. Elevated CO2 for the duration of one growing season appeared to delay the onset of dormancy and resulted in approximately 10 additional days of positive ecosystem flux. Homeostatic adjustment of ecosystem CO2 flux (sum of species' response) was apparent by the third week of exposure to elevated CO2. Ecosystem dark respiration rates were not significantly higher at elevated CO2 levels. Rapid homeostatic adjustment to elevated CO2 may limit carbon uptake in upland tundra. Abiotic factors were evaluated as predictors of ecosystem CO2 flux. For chambers exposed to ambient and elevated CO2 levels for the duration of the growing season, seasonality (Julian day) was the best predictor of ecosystem CO2 flux at both ambient and elevated CO2 levels. Light (PAR), soil temperature, and air temperature were also predictive of seasonal ecosystem flux, but only at elevated CO2 levels. At any combination of physical conditions, flux of the elevated CO2 treatment was greater than that at ambient. In short-term manipulations of CO2, tundra exposed to elevated CO2 had threefold greater carbon gain, and had one half the ecosystem level, light compensation point when compared to ambient CO2 treatments. Elevated CO2-acclimated tundra had twofold greater carbon gain compared to ambient treatments, but there was no difference in ecosystem level, light compensation point between elevated and ambient CO2 treatments. The predicted future increases in cloudiness could substantially decrease the effect of elevated atmospheric CO2 on net ecosystem carbon budget. These analyses suggest little if any long-term stimulation of ecosystem carbon acquisition by increases in atmospheric CO2.  相似文献   

2.
Summary CO2 efflux from tussock tundra in Alaska that had been exposed to elevated CO2 for 2.5 growing seasons was measured to assess the effect of long- and short-term CO2 enrichment on soil respiration. Long-term treatments were: 348, 514, and 683 μll−1 CO2 and 680 μll−1 CO2+4°C above ambient. Measurements were made at 5 CO2 concentrations between 87 and 680 μll−1 CO2. Neither long- or short-term CO2 enrichment significantly affected soil CO2 efflux. Tundra developed at elevated temperature and 680 μll−1 CO2 had slightly higher, but not statistically different, mean respiration rates compared to untreated tundra and to tundra under CO2 control alone.  相似文献   

3.
We examined the importance of temperature (7°C or 15°C) and soil moisture regime (saturated or field capacity) on the carbon (C) balance of arctic tussock tundra microcosms (intact blocks of soil and vegetation) in growth chambers over an 81-day simulated growing season. We measured gaseous CO2 exchanges, methane (CH4) emissions, and dissolved C losses on intact blocks of tussock (Eriophorum vaginatum) and intertussock (moss-dominated). We hypothesized that under increased temperature and/or enhanced drainage, C losses from ecosystem respiration (CO2 respired by plants and heterotrophs) would exceed gains from gross photosynthesis causing tussock tundra to become a net source of C to the atmosphere. The field capacity moisture regime caused a decrease in net CO2 storage (NEP) in tussock tundra micrososms. This resulted from a stimulation of ecosystem respiration (probably mostly microbial) with enhanced drainage, rather than a decrease in gross photosynthesis. Elevated temperature alone had no effect on NEP because CO2 losses from increased ecosystem respiration at elevated temperature were compensated by increased CO2 uptake (gross photosynthesis). Although CO2 losses from ecosystem respiration were primarily limited by drainage, CH4 emissions, in contrast, were dependent on temperature. Furthermore, substantial dissolved C losses, especially organic C, and important microhabitat differences must be considered in estimating C balance for the tussock tundra system. As much as 20% of total C fixed in photosynthesis was lost as dissolved organic C. Tussocks stored 2x more C and emitted 5x more methane than intertussocks. In spite of the limitations of this microcosm experiment, this study has further elucidated the critical role of soil moisture regime and dissolved C losses in regulating net C balance of arctic tussock tundra.  相似文献   

4.
Net CO2 flux measurements conducted during the summer and winter of 1994–96 were scaled in space and time to provide estimates of net CO2 exchange during the 1995–96 (9 May 1995–8 May 1996) annual cycle for the Kuparuk River Basin, a 9200 km2 watershed located in NE Alaska. Net CO2 flux was measured using dynamic chambers and eddy covariance in moist‐acidic, nonacidic, wet‐sedge, and shrub tundra, which comprise 95% of the terrestrial landscape of the Kuparuk Basin. CO2 flux data were used as input to multivariate models that calculated instantaneous and daily rates of gross primary production (GPP) and whole‐ecosystem respiration (R) as a function of meteorology and ecosystem development. Net CO2 flux was scaled up to the Kuparuk Basin using a geographical information system (GIS) consisting of a vegetation map, digital terrain map, dynamic temperature and radiation fields, and the models of GPP and R. Basin‐wide estimates of net CO2 exchange for the summer growing season (9 May?5 September 1995) indicate that nonacidic tundra was a net sink of ?31.7 ± 21.3 GgC (1 Gg = 109 g), while shrub tundra lost 32.5 ± 6.3 GgC to the atmosphere (negative values denote net ecosystem CO2 uptake). Acidic and wet sedge tundra were in balance, and when integrated for the entire Kuparuk River Basin (including aquatic surfaces), whole basin summer net CO2 exchange was estimated to be in balance (?0.9 ± 50.3 GgC). Autumn to winter (6 September 1995–8 May 1996) estimates of net CO2 flux indicate that acidic, nonacidic, and shrub tundra landforms were all large sources of CO2 to the atmosphere (75.5 ± 8.3, 96.4 ± 11.4, and 43.3 ± 4.7 GgC for acidic, nonacidic, and shrub tundra, respectively). CO2 loss from wet sedge surfaces was not substantially different from zero, but the large losses from the other terrestrial landforms resulted in a whole basin net CO2 loss of 217.2 ± 24.1 GgC during the 1995–96 cold season. When integrated for the 1995–96 annual cycle, acidic (66.4 + 25.25 GgC), nonacidic (64.7 ± 29.2 GgC), and shrub tundra (75.8 ± 8.4 GgC) were substantial net sources of CO2 to the atmosphere, while wet sedge tundra was in balance (0.4 + 0.8 GgC). The Kuparuk River Basin as a whole was estimated to be a net CO2 source of 218.1 ± 60.6 GgC over the 1995–96 annual cycle. Compared to direct measurements of regional net CO2 flux obtained from aircraft‐based eddy covariance, the scaling procedure provided realistic estimates of CO2 exchange during the summer growing season. Although winter estimates could not be assessed directly using aircraft measurements of net CO2 exchange, the estimates reported here are comparable to measured values reported in the literature. Thus, we have high confidence in the summer estimates of net CO2 exchange and reasonable confidence in the winter net CO2 flux estimates for terrestrial landforms of the Kuparuk river basin. Although there is larger uncertainty in the aquatic estimates, the small surface area of aquatic surfaces in the Kuparuk river basin (≈ 5%) presumably reduces the potential for this uncertainty to result in large errors in basin‐wide CO2 flux estimates.  相似文献   

5.
To determine how elevated night temperature interacts with carbon dioxide concentration ([CO2]) to affect methane (CH4) emission from rice paddy soil, we conducted a pot experiment using four controlled‐environment chambers and imposed a combination of two [CO2] levels (ambient: 380 ppm; elevated: 680 ppm) and two night temperatures (22 and 32 °C). The day temperature was maintained at 32 °C. Rice (cv. IR72) plants were grown outside until the early‐reproductive growth stage and then transferred to the chambers. After onset of the treatment, day and night CH4 fluxes were measured every week. The CH4 fluxes changed significantly with the growth stage, with the largest fluxes occurring around the heading stage in all treatments. The total CH4 emission during the treatment period was significantly increased by both elevated [CO2] (P=0.03) and elevated night temperature (P<0.01). Elevated [CO2] increased CH4 emission by 3.5% and 32.2% under high and low night temperature conditions, respectively. Elevated [CO2] increased the net dry weight of rice plants by 12.7% and 38.4% under high and low night temperature conditions, respectively. These results imply that increasing night temperature reduces the stimulatory effect of elevated [CO2] on both CH4 emission and rice growth. The CH4 emission during the day was larger than at night even under the high‐night‐temperature treatment (i.e. a constant temperature all day). This difference became larger after the heading stage. We observed significant correlations between the night respiration and daily CH4 flux (P<0.01). These results suggest that net plant photosynthesis contributes greatly to CH4 emission and that increasing night temperature reduces the stimulatory effect of elevated [CO2] on CH4 emission from rice paddy soil.  相似文献   

6.
The temperature dependence of net CO2 exchange was determined at various soil water potentials for two sympatric desert species. Notholaena parryi D. C. Eat. (Pteridaceae) and Encelia farinosa Gray (Compositae). As water stress increased, the temperature optimum of apparent (net) photosynthesis shifted 7 to 10°C downward and the maximum rate decreased for both species. The downward shift in temperature optimum with water stress was the result of a greater fractional stomatal closure with increasing temperature and a lowering of the temperature where maximal CO2 residual conductance of the mesophyll cells occurred. This lowering of the temperature for maximal CO2 residual conductance appears to reflect (1) a greater effect of water stress on gross photosynthesis than on respiration plus photorespiration and (2) the higher temperature optimum for respiration plus photorespiration than for gross photosynthesis. The downward shift in the temperature optimum of apparent photosynthesis can have a significant effect on the predicted carbon balance of plants as the soil water potential decreases.  相似文献   

7.
Respiration (carbon efflux) by terrestrial ecosystems is a major component of the global carbon (C) cycle, but the response of C efflux to atmospheric CO2 enrichment remains uncertain. Respiration may respond directly to an increase in the availability of C substrates at high CO2, but also may be affected indirectly by a CO2‐mediated alteration in the amount by which respiration changes per unit of change in temperature or C uptake (sensitivity of respiration to temperature or C uptake). We measured CO2 fluxes continuously during the final 2 years of a 4‐year experiment on C3/C4 grassland that was exposed to a 200–560 μmol mol?1 CO2 gradient. Flux measurements were used to determine whether CO2 treatment affected nighttime respiration rates and the response of ecosystem respiration to seasonal changes in net C uptake and air temperature. Increasing CO2 from subambient to elevated concentrations stimulated grassland respiration at night by increasing the net amount of C fixed during daylight and by increasing either the sensitivity of C efflux to daily changes in C fixation or the respiration rate in the absence of C uptake (basal ecosystem respiration rate). These latter two changes contributed to a 30–47% increase in the ratio of nighttime respiration to daytime net C influx as CO2 increased from subamient to elevated concentrations. Daily changes in net C uptake were highly correlated with variation in temperature, meaning that the shared contribution of C uptake and temperature in explaining variance in respiration rates was large. Statistically controlling for collinearity between temperature and C uptake reduced the effect of a given change in C influx on respiration. Conversely, CO2 treatment did not affect the response of grassland respiration to seasonal variation in temperature. Elevating CO2 concentration increased grassland respiration rates by increasing both net C input and respiration per unit of C input. A better understanding of how C efflux varies with substrate supply thus may be required to accurately assess the C balance of terrestrial ecosystems.  相似文献   

8.
In situ manipulations were conducted in a naturally drained lake on the arctic coastal plain near Prudhoe Bay, Alaska (70 °21.98′ N, 148 °33.72′ W) to assess the potential short-term effects of decreased water table and elevated temperature on net ecosystem CO2 flux. The experiments were conducted over a 2-year period, and during that time, water table depth of drained plots was maintained on average 7 cm lower than the ambient water table, and surface temperatures of plots exposed to elevated temperature were increased on average 0.5 °C. Water table drainage, and to a lesser extent elevated temperature, resulted in significant increases in ecosystem respiration (ER) rates, and only small and variable changes in gross ecosystem productivity (GEP). As a result, drained plots were net sources of ≈ 40 gC m–2 season–1 over both years of manipulation, while control plots were net sinks of atmospheric CO2 of about 10 gC m–2 season–1 (growing season length was an estimated 125 days). Control plots exposed to elevated temperatures accumulated slightly more carbon than control plots exposed to ambient temperatures. The direct effects of elevated temperature on net CO2 flux, ER, and GEP were small, however, elevated temperature appeared to interact with drainage to exacerbate the amount of net carbon loss. These data suggest that many currently saturated or nearly saturated wet sedge ecosystems of the north slope of Alaska may become significant sources of CO2 to the atmosphere if climate change predictions of increased evapotranspiration and reduced soil water status are realized. There is ample evidence that this may be already occurring in arctic Alaska, as a change in net carbon balance has been observed for both tussock and wet-sedge tundra ecosystems over the last 2–3 decades, which coincides with a recent increase in surface temperature and an associated decrease in soil water content. In contrast, if precipitation increases relatively more than evapotranspiration, then increases in soil moisture content will likely result in greater carbon accumulation.  相似文献   

9.
Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon fluxes in response to climate change? These questions are of global importance because of the vast quantities of organic carbon stored in permafrost soils. In this meta‐analysis, we compile 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes. Using time‐series analysis, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences in mean annual temperature could help explain temporal changes in CO2 flux. Growing season net CO2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we estimate that tundra sites were annual CO2 sources from the mid‐1980s until the 2000s, and data from the last 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis.  相似文献   

10.
The springtime transition to regional‐scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze–thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO2 inversions using a CASA‐GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic‐onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO2 inversions, with better correlation to above‐freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed.  相似文献   

11.
The role of acclimation of dark respiration to temperature and CO2 concentration and its relationship to growth are critical in determining plant response to predicted global change. We explored temperature acclimation of respiration in seedlings of tree species of the North American boreal forest. Populus tremuloides, Betula papyrifera, Larix laricina, Pinus banksiana, and Picea mariana plants were grown from seed in controlled-environments at current and elevated concentrations of CO2 (370 and 580 μmol mol–1) in combination with three temperature treatments of 18/12, 24/18, and 30/24 °C (light/dark period). Specific respiration rates of roots and shoots acclimated to temperature, damping increases in rates across growth-temperature environments compared to short-term temperature responses. Compared at a standard temperature, root and shoot respiration rates were, on average, 40% lower in plants grown at the highest compared to lowest growth temperature. Broad-leaved species had a lower degree of temperature acclimation of respiration than did the conifers. Among species and treatment combinations, rates of respiration were linearly related to size and relative growth rate, and relationships were comparable among growth environments. Specific respiration rates and whole-plant respiratory CO2 efflux as a proportion of daily net CO2 uptake increased at higher growth temperatures, but were minimally affected by CO2 concentration. Whole-plant specific respiration rates were two to three times higher in broad-leaved than coniferous species. However, compared to faster-growing broad-leaved species, slower-growing conifers lost a larger proportion of net daily CO2 uptake as respiratory CO2 efflux, especially in roots. Interspecific variation in acclimation responses of dark respiration to temperature is more important than acclimation of respiration to CO2 enrichment in modifying tree seedling growth responses to projected increases in CO2 concentration and temperature.  相似文献   

12.
Nijs  I.  Impens  I. 《Plant Ecology》1993,(1):421-431
Changes in gross canopy photosynthetic rate (PGc), produced by long-term exposure to an elevated atmospheric CO2 level (626±50 µmol mol-1), were modelled forLolium perenne L. cv. Vigor andTrifolium repens L. cv. Blanca, using a simple photosynthesis model, based on biochemical and physiological information (leaf gross CO2 uptake in saturating light, Pmax, and leaf quantum efficiency, ) and structural vegetation parameters (leaf area index, LAI, canopy extinction coefficient, k, leaf transmission, M). Correction of PGc for leaf respiration allowed comparison with previously measured canopy net CO2 exchange rates, with the average divergence from model prediction amounting to about 6%. Sensitivity analysis showed that for a three-week old canopy, the PGc increase in high CO2 could be attributed largely to changes in Pmax and , while differences in canopy architecture were no longer important for the PGc-stimulation (which they were in the early growth stages). As a consequence of this increasing LAI with canopy age, the gain of daytime CO2 uptake is progressively eroded by the increasing burden of canopy respiration in high-CO2 grownLolium perenne. Modelling canopy photosynthesis in different regrowth stages after cutting (one week, two weeks,...), revealed that the difference in a 24-h CO2 balance between the ambient and the high CO2 treatment is reduced with regrowth time and completely disappears after 6 weeks.Abbreviations C350 ambient CO2 treatment - C625 high CO2 treatment - k canopy extinction coefficient - LAI leaf area index - LAImax fitted LAI-maximum - M leaf transmission - NCER net CO2 exchange rate - PGc gross canopy photosynthetic rate - Q photosynthetic photon flux density - Q0 photosynthetic photon flux density at the top of the canopy - RDc canopy dark respiration rate - RDl leaf dark respiration rate - t regrowth time after cutting - T air temperature - leaf quantum efficiency - LAI rate of initial LAI-increase with time  相似文献   

13.
二氧化碳储存通量对森林生态系统碳收支的影响   总被引:5,自引:0,他引:5  
涡度相关系统观测高度以下的CO2储存通量对准确评价森林生态系统与大气间净CO2交换量(NEE)有着重要的影响.本研究以长白山阔叶红松林为研究对象,利用2003年的涡度相关观测数据以及CO2浓度廓线数据,分析了CO2储存通量的变化规律及其对碳收支过程的影响.结果表明:涡度相关观测高度以下的CO2储存通量具有典型的日变化特征,其最大变化量出现在大气稳定与不稳定层结转换期.利用涡度相关系统观测的单点CO2浓度变化方法与利用CO2浓度廓线方法计算的CO2储存通量差异不显著.忽略CO2储存通量,在半小时尺度上会造成对夜间和白天的NEE分别低估25%和19%,在日和年尺度上,会对NEE低估10%和25%;忽略CO2储存通量,会低估Michaelis-Menten光响应方程及Lloyd-Taylor呼吸方程的参数,并且对表观初始量子效率α和参考呼吸Rref的低估最大;忽略CO2储存通量,在半小时、日及年尺度上,均会对总光合作用(GPP)和生态系统呼吸(Re)低估约20%.  相似文献   

14.
Gas exchange and dry-weight production in Opuntia ficus-indica, a CAM species cultivated worldwide for its fruit and cladodes, were studied in 370 and 750 μmol mol−1 CO2 at three photosynthetic photon flux densities (PPFD: 5, 13 and 20 mol m−2 d−1). Elevated CO2 and PPFD enhanced the growth of basal cladodes and roots during the 12-week study. A rise in the PPFD increased the growth of daughter cladodes; elevated CO2 enhanced the growth of first-daughter cladodes but decreased the growth of the second-daughter cladodes produced on them. CO2 enrichment enhanced daily net CO2 uptake during the initial 8 weeks after planting for both basal and first-daughter cladodes. Water vapour conductance was 9 to 15% lower in 750 than in 370 μmol mol−1 CO2. Cladode chlorophyll content was lower in elevated CO2 and at higher PPFD. Soluble sugar and starch contents increased with time and were higher in elevated CO2 and at higher PPFD. The total plant nitrogen content was lower in elevated CO2. The effect of elevated CO2 on net CO2 uptake disappeared at 12 weeks after planting, possibly due to acclimation or feedback inhibition, which in turn could reflect decreases in the sink strength of roots. Despite this decreased effect on net CO2 uptake, the total plant dry weight at 12 weeks averaged 32% higher in 750 than in 370 μmol mol−1 CO2. Averaged for the two CO2 treatments, the total plant dry weight increased by 66% from low to medium PPFD and by 37% from medium to high PPFD.  相似文献   

15.
We used five analytical approaches to compare net ecosystem exchange (NEE) of carbon dioxide (CO2) from automated and manual static chambers in a peatland, and found the methods comparable. Once per week we sampled manually from 10 collars with a closed chamber system using a LiCor 6200 portable photosynthesis system, and simulated four photosynthetically active radiation (PAR) levels using shrouds. Ten automated chambers sampled CO2 flux every 3 h with a LiCor 6252 infrared gas analyzer. Results of the five comparisons showed (1) NEE measurements made from May to August, 2001 by the manual and automated chambers had similar ranges: −10.8 to 12.7 μmol CO2 m−2 s−1 and −17.2 to 13.1 μmol CO2 m−2 s−1, respectively. (2) When sorted into four PAR regimes and adjusted for temperature (respiration was measured under different temperature regimes), mean NEE did not differ significantly between the chambers (p < 0.05). (3) Chambers were not significantly different in regression of ln( − respiration) on temperature. (4) But differences were found in the PAR vs. NEE relationship with manual chambers providing higher maximum gross photosynthesis estimates (GPmax), and slower uptake of CO2 at low PAR (α) even after temperature adjustment. (5) Due to the high variability in chamber characteristics, we developed an equation that includes foliar biomass, water table, temperature, and PAR, to more directly compare automated and manual NEE. Comparing fitted parameters did not identify new differences between the chambers. These complementary chamber techniques offer a unique opportunity to assess the variability and uncertainty in CO2 flux measurements.  相似文献   

16.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   

17.
Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over 7 years Reco, GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco, GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed Reco, GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Nonsummer Reco models estimated that the area was an annual CO2 source during all years of observation. Nonsummer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source.  相似文献   

18.
Eddy covariance and sapflow data from three Mediterranean ecosystems were analysed via top‐down approaches in conjunction with a mechanistic ecosystem gas‐exchange model to test current assumptions about drought effects on ecosystem respiration and canopy CO2/H2O exchange. The three sites include two nearly monospecific Quercus ilex L. forests – one on karstic limestone (Puéchabon), the other on fluvial sand with access to ground water (Castelporziano) – and a typical mixed macchia on limestone (Arca di Noè). Estimates of ecosystem respiration were derived from light response curves of net ecosystem CO2 exchange. Subsequently, values of ecosystem gross carbon uptake were computed from eddy covariance CO2 fluxes and estimates of ecosystem respiration as a function of soil temperature and moisture. Bulk canopy conductance was calculated by inversion of the Penman‐Monteith equation. In a top‐down analysis, it was shown that all three sites exhibit similar behaviour in terms of their overall response to drought. In contrast to common assumptions, at all sites ecosystem respiration revealed a decreasing temperature sensitivity ( Q 10) in response to drought. Soil temperature and soil water content explained 70–80% of the seasonal variability of ecosystem respiration. During the drought, light‐saturated ecosystem gross carbon uptake and day‐time averaged canopy conductance declined by up to 90%. These changes were closely related to soil water content. Ecosystem water‐use efficiency of gross carbon uptake decreased during the drought, regardless whether evapotranspiration from eddy covariance or transpiration from sapflow had been used for the calculation. We evidence that this clearly contrasts current models of canopy function which predict increasing ecosystem water‐use efficiency (WUE) during the drought. Four potential explanations to those results were identified (patchy stomatal closure, changes in physiological capacities of photosynthesis, decreases in mesophyll conductance for CO2, and photoinhibition), which will be tested in a forthcoming paper. It is suggested to incorporate the new findings into current biogeochemical models after further testing as this will improve estimates of climate change effects on (semi)arid ecosystems' carbon balances.  相似文献   

19.
Carbon exchange rates (CER) and whole-plant carbon balances of beech (Fagus grandifolia) and sugar maple (Acer saccharum) were compared for seedlings grown under low irradiance to determine the effects of atmospheric CO2 enrichment on shade-tolerant seedlings of co-dominant species. Under contemporary atmospheric CO2, photosynthetic rate per unit mass of beech was lower than for sugar maple, and atmospheric CO2 enrich ment enhanced photosynthesis for beech only. Aboveground respiration per unit mass decreased with CO2 enrichment for both species while root respiration per unitmass decreased for sugar maple only. Under contemporary atmoapheric CO2, beech had lower C uptake per plant than sugar maple, while C losses per plant to nocturnal aboveground and root respiration were similar for both species. Under elevated CO2, C uptake per plant was similar for both species, indicating a significant relative increase in whole-seedling CER with CO2 enrich ment for beech but not for sugar maple. Total C loss per plant to aboveground respiration was decreased for beech only because increase in sugar maple leaf mass counterbalanced a reduction in respiration rates. Carbon loss to root respiration per plant was not changed by CO2 enrichment for either species. However, changes in maintenance respiration cost and nitrogen level suggest changes in tissue composition with elevated CO2. Beech had a greater net daily C gain with CO2 enrichment than did sugar maple in contrast to a lower one under contemporary CO2. Elevated CO2 preferentially enhances the net C balance of beech by increasing photosynthesis and reducing respiration cost. In all cases, the greatest C lost was by roots, indicating the importance of belowground biomass in net C gain. Relative growth rate estimated from biomass accumulation was not affected by CO2 enrichment for either species possibly because of slow growth under low light. This study indicates the importance of direct effects of CO2 enrichment when predicting potential change in species distribution with global climate change.  相似文献   

20.
We examined the in situ CO2 gas-exchange of fruits of a tropical tree, Durio zibethinus Murray, growing in an experimental field station of the Universiti Pertanian Malaysia. Day and night dark respiration rates were exponentially related to air temperature. The temperature dependent dark respiration rate showed a clockwise loop as time progressed from morning to night, and the rate was higher in the daytime than at night. The gross photosynthetic rate was estimated by summing the rates of daytime dark respiration and net photosynthesis. Photosynthetic CO2 refixation, which is defined as the ratio of gross photosynthetic rate to dark respiration rate in the daytime, ranged between 15 and 45%. The photosynthetic CO2 refixation increased rapidly as the temperature increased in the lower range of air temperature T c (T c <28.5 °C), while it decreased gradually as the temperature increased in the higher range (T c 28.5 °C). Light dependence of photosynthetic CO2 refixation was approximated by a hyperbolic formula, where light saturation was achieved at 100 mol m–2 s–1 and the asymptotic CO2 refixation was determined to be 37.4%. The estimated gross photosynthesis and dark respiration per day were 1.15 and 4.90 g CO2 fruit–1, respectively. Thus the CO2 refixation reduced the respiration loss per day by 23%. The effect of fruit size on night respiration rate satisfied a power function, where the exponent was larger than unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号