首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have localized the PvuII polymorphism of the glucocerebrosidase gene complex to intron 6 of the active gene. Using the polymerase chain reaction (PCR) to amplify intron 6 of DNA samples from Pv1.1-/Pv1.1+ individuals, we defined the mutation causing this polymorphism as a G----A single-base substitution at position 3931 of the active gene. By analyzing 54 unrelated Gaucher patients we show strong linkage disequilibrium between the Pv1.1- genotype and the common Jewish mutation 1226 causing the adult type of this disease. Gaucher disease patients heterozygous for the 1226 allele and one unidentified allele (1226/?), particularly those of Jewish ancestry, were predominantly of the Pv1.1-/PV1.1+ genotype. This suggests that one of the unknown alleles may be relatively common and linked to the Pv1.1+ genotype.  相似文献   

2.
Gaucher disease, an inherited glycolipid storage disorder, is caused by a deficiency of the catabolic enzyme glucocerebrosidase (EC 3.2.1.45). The gene for human glucocerebrosidase is located on chromosome 1q21 and has a highly homologous pseudogene situated 16 kb downstream. We report two novel polymorphic sequences in the glucocerebrosidase gene region: the first consists of a variable number of dinucleotide (CT) repeats located 3.2 kb upstream from the glucocerebrosidase gene, and the second is a tetranucleotide (AAAT) repeat found between the glucocerebrosidase gene and its pseudogene, 9.8 kb downstream from the functional gene. These polymorphic sequences, along with a previously reported PvuII polymorphism in intron 6 of the glucocerebrosidase gene, were analyzed in patients with Gaucher disease (n=106) and in two normal control populations, one of Ashkenazi Jewish ancestry (n=72) and the second comprising non-Jewish individuals (n=46). In these samples, strong linkage disequilibrium was found between mutations N370S, c.84–85insG, and R463C and specific haplotypes; no significant linkage disequilibrium was found when examining haplotypes of patients with the L444P mutation. Studies of these polymorphic sites in several instances also led to the recognition of genotyping errors and the identification of unusual recombinant alleles. These new polymorphic sites provide additional tools for mutational screening and founder effect studies of Gaucher disease. Received: 5 December 1998 / Accepted: 14 January 1999  相似文献   

3.
Reliable estimates of the frequency of Gaucher disease-producing mutations are not available. The high frequency of Gaucher disease in the Ashkenazi Jewish population is due to the occurrence of a mutation at nucleotide (nt) 1226. We have screened 593 DNA samples from normal Ashkenazi Jews, as well as 62 DNA samples from all our Ashkenazi Jewish patients with Gaucher disease, for the presence of the 1226 mutation. In the 593 presumed normal Ashkenazi Jewish individuals the 1226 mutation was identified in the heterozygous state in 37 and in the homozygous state in two, giving a gene frequency of .035 for the mutation. This 1226 mutation represented 73% of the 124 Gaucher disease alleles in Jewish Gaucher disease patients. Accordingly we estimate that the gene frequency for Gaucher disease among the Ashkenazi Jewish population is .047, which is equivalent to a carrier frequency of 8.9% and a birth incidence of 1:450.  相似文献   

4.
BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature.  相似文献   

5.
Two polymorphisms, one in the liver-type pyruvate kinase gene (PKLR) and one in the glucocerebrosidase gene (GBA), both of which are on band q21 of chromosome 1, were found to be tightly linked. Each of three Gaucher disease mutations in 112 chromosomes studied was associated with a unique haplotype. With a conservative assumption about the length of time that the Gaucher disease mutation has been present in the Jewish population, we deduce that the genetic distance between these two loci is probably under 0.2 centimorgans. Four haplotypes are produced by these polymorphic loci, but two of these are relatively uncommon because the polymorphic sites are in linkage disequilibrium. Nonetheless these markers are potentially useful in the prenatal diagnosis of pyruvate kinase deficiency in families who have at least one affected child and may also be helpful in heterozygote detection in families with Gaucher disease where a specific mutation producing the disease in unknown.  相似文献   

6.
7.
We have identified a new T-to-A single-base substitution at nucleotide 3548 (in the genomic sequence) in exon 6 in the glucocerebrosidase gene from a patient with Gaucher disease type 3. This mutation caused a substitution of isoleucine for phenylalanine at amino acid residue 213 (of 497 residues in the mature protein). By in vitro expression study in cultured mammalian cells, this mutation resulted in deficient activity of glucocerebrosidase. By allele-specific oligonucleotide hybridization of selectively PCR-amplified DNA from eight unrelated Japanese Gaucher disease patients, this mutant allele was observed in other neuronopathic Japanese Gaucher disease patients, in moderately frequent occurrence (three of six neuronopathic patients). This observation suggests that this allele was one of severe [corrected] alleles which were related to the development of neurological manifestations of Gaucher disease.  相似文献   

8.
Gaucher disease: gene frequencies in the Ashkenazi Jewish population.   总被引:7,自引:1,他引:6  
DNA from over 2,000 Ashkenazi Jewish subjects has been examined for the four most common Jewish Gaucher disease mutations, which collectively account for about 96% of the disease-producing alleles in Jewish patients. This population survey has made possible the estimation of gene frequencies for these alleles. Eighty-seven of 1,528 individuals were heterozygous for the 1226G (N370S) mutation, and four presumably well persons were homozygous for this mutation. The gene frequency for the 1226G allele was calculated to be .0311, and when these data were pooled with those obtained previously from another 593 Jewish subjects, a gene frequency of .032 with a standard error of .004 was found. Among 2,305 normal subjects, 10 were found to be heterozygous for the 84GG allele, giving a gene frequency of .00217 with a standard error of .00096. No examples of the IVS2(+1) mutation were found among 1,256 samples screened, and no 1448C (L444P) mutations were found among 1,528 samples examined. Examination of the distribution of Gaucher disease gene frequencies in the general population shows that the ratio of 1226G mutations to 84GG mutations is higher than that in the patient population. This is presumed to be due to the fact that homozygotes for the 1226G mutation often have late-onset disease or no significant clinical manifestations at all. To bring the gene frequency in the patient population into conformity with the gene frequency in the general population, nearly two-thirds of persons with a Gaucher disease genotype would be missing from the patient population, presumably because their clinical manifestations were very mild.  相似文献   

9.
Summary Single-stranded cDNA was prepared from RNA obtained from a patient with type 1 Gaucher disease. The cDNA was amplified in vitro and analyzed by sequencing. Three base-pair changes were identified which included a G to C transversion at nucleotide 3119 of the active gene (Asp140His), an A to C transversion at nucleotide 3170 (Lys157Gln) and a G to A change at nucleotide 5309 (Glu326Lys). To study the mode of inheritance of the three different base-pair changes, genomic DNA was prepared from blood or skin fibroblasts of several family members. Genomic glucocerebrosidase DNA sequences were amplified and subjected to hybridization with allele-specific oligonucleotides (ASOs). The hybridization profiles demonstrated that two of the basepair changes originated from the mother and were transmitted to her two affected sons and to a grandchild, while the third base-pair change, originating from the father, was transmitted to his two affected sons, a carrier daughter and a second grandchild. Tests of other patients with Gaucher disease failed to disclose the presence of the three base-changes. This is a unique family with three base-pair changes tightly linked to Gaucher disease.  相似文献   

10.
11.
Recently, a mutation at nucleotide 1193 of the glucocerebrosidase gene was described in a patient with type 1 Gaucher disease. This mutation destroys a TaqI site in a polymerase chain reaction (PCR)-amplified fragment. We used digestion with this enzyme to screen DNA samples from Gaucher disease patients representing 23 previously unidentified alleles and discovered that this site had been destroyed in three samples. However, the mutation that caused this change proved to be a CT substitution at cDNA nucleotide 1192 (Genomic 5408; 359ArgEnd). Fortuitously, another TaqI site was destroyed by a different mutation, a GA mutation at nt 1312 (Genomic 5927; 399AspAsn). Both of these mutations were functionally severe in that they were associated with type 2 (acute neuronopathic) Gaucher disease.  相似文献   

12.
13.
Characterization of mutations in Gaucher patients by cDNA cloning.   总被引:16,自引:6,他引:10       下载免费PDF全文
Mutated cDNA clones containing the entire coding sequence of human glucocerebrosidase were isolated from libraries originated from Gaucher patients. Sequence analysis of a mutated cDNA derived from a type II Gaucher patient revealed a C-to-G transversion causing a substitution of an arginine for a proline at residue 415. This change creates a new cleavage site for the enzyme HhaI in the mutated cDNA. Allele-specific oligonucleotide hybridization made it possible to show that this mutation exists in the genomic DNA of the patient. From a cDNA library originated from a type I Gaucher patient, a mutated allele was cloned that contains a T-to-C transition causing a substitution of proline for leucine at residue 444 and creating a new NciI site. This mutation is identical to that described by S. Tsuji and colleagues in genomic DNA from type I, type II, and type III patients. Since the new NciI site generates RFLP, it was used to test the existence of this mutated allele in several Gaucher patients by Southern blot analysis. This allele was found in type I (Jewish and non-Jewish), type II, and type III Gaucher patients. These findings led us to conclude that the patient suffering from type II disease (denoted GM1260) carried both mutations described above. Any one of the amino acid changes described reduces the glucocerebrosidase activity as tested by transfection of COS cells with expression vectors harboring the mutated cDNAs. The base changes in the two mutated cDNAs do not affect the electrophoretic mobility of the corresponding polypeptides on an SDS polyacrylamide gel.  相似文献   

14.
The characterization of mutations in Japanese patients with lipidosis, particularly in metachromatic leukodystrophy (MLD) and Gaucher disease has been studied in detail. Metachromatic leukodystrophy is characterized by an accumulation of sulfatide in nervous tissues and kidney due to a deficiency of arylsulfatase A (ASA). We analyzed the presence of three known mutant arylsulfatase A alleles in Japanese patients with MLD. Among 10 patients of Japanese patients with MLD, we found that allele 445A mutation has moderately high incidence and also homozygosity of this mutation results in the late infantile form. Allele 2381T was not found in Japanese patients. Furthermore, we found novel mutation which is G- to A mutation at the 1070 nucleotide of the ASA gene (designated 1070 A) in Japanese patients with juvenile onset. This mutation results in a amino acid substitution of Gly245 by Arg and found in heterozygote form. Our studies of molecular analysis in 10 Japanese patients with MLD indicate that Japanese MLD patients have unique characteristics of ASA mutations compared with those of Caucasian patients. On the other hand, Gaucher disease is the most prevalent sphingolipidosis, characterized by an accumulation of glucocerebroside in macrophage derived cells due to a deficiency of lysosomal hydrolase glucocerebrosidase. To study the molecular basis of Gaucher disease in Japanese patients, we analyzed the presence of the two known mutations (6433C and 3548A) in the glucocerebrosidase gene of 15 patients with Gaucher disease. We found that the 6433C and 3548A mutations occur in all subtypes of Japanese patients with Gaucher disease. Most frequent mutations among them was the 6433C mutation, 40% of 30 chromosomes, whereas the novel mutation of the 3548A found in Japanese patients with neuronopathic Gaucher disease was found in 20% (6 out of 30 chromosomes). The characteristics of these mutations in Japanese patients with Gaucher disease is different from those of Caucasian populations reported previously.  相似文献   

15.
Sequence of two alleles responsible for Gaucher disease   总被引:13,自引:0,他引:13  
  相似文献   

16.
To detect mutations in the glucocerebrosidase gene in Gaucher disease patients, we used the recently described technique of single-strand conformation polymorphism (SSCP) analysis in combination with selective amplification. We analyzed exon 8, 9, 10 and 11 of the glucocerebrosidase gene; these exons were sequentially amplified using the selectively amplified products as templates. We found variant SSCP patterns corresponding to the presence or absence of the 6433C mutation, which was detected by NciI digestion analysis, in exon 10. Furthermore, we detected four variant SSCP patterns in exon 8, 10 and 11. Sequencing analysis consistently revealed four single-base substitutions in the corresponding exons, three novel missense mutations (5409A, 6375G and 6682T) and one silent polymorphism (6594A). These mutations were found only in one patient; therefore, these findings have confirmed the marked genetic heterogeneity of Gaucher disease. SSCP analysis in combination with selective amplification is a rapid and sensitive procedure for the screening of the mutations in the glucocerebrosidase gene of patients with Gaucher disease.  相似文献   

17.
The frequency of nine different mutated alleles known to occur in the glucocerebrosidase gene was determined in 247 Gaucher patients, of whom 176 were of Jewish extraction, 2 were Jewish with one converted parent, and 69 were of non-Jewish origin. DNA was prepared from peripheral blood, active glucocerebrosidase sequences were amplified by using the PCR technique, and the mutations were identified by using the allele-specific oligonucleotide hybridization method. The N37OS mutation appeared in 69.77% of the mutated alleles in Jewish patients and in 22.86% of the mutated alleles in non-Jews. The 84GG mutation, which has not been found so far among non-Jewish patients, existed in 10.17% of the disease alleles among Jewish patients. The IVS + 1 mutation constituted 2.26% of the disease alleles among Jewish patients and 1.43% among the non-Jewish patients. RecTL, a complex allele containing four single-base-pair changes, occurred in 2.26% of the alleles in Jewish patients and was found in two (1.43%) of the patients of non-Jewish extraction. Another complex allele, designated "RecNciI" and containing three single-point mutations, appeared in 7.8% of alleles of non-Jewish patients and in only two (0.56%) of the Jewish families. The prevalence of the L444P mutation among non-Jewish Gaucher patients was 31.43%, while its prevalence among Jewish patients was only 4.24%. The prevalence of two other point mutations--D409H and R463C--was 5.00% and 3.57%, respectively, among non-Jewish patients and was not found among the Jewish Gaucher patient population. The prevalence of the R496H mutation, found so far only among Jewish patients, was 1.13%. The results presented demonstrate that seven mutations identify 90.40% of the mutations among Jewish patients and that these seven mutations allow diagnosis of only 73.52% of the non-Jewish patients. Identification of additional mutant alleles will enhance the accuracy of carrier detection.  相似文献   

18.
Gaucher disease results from an autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase. The glucocerebrosidase gene is located in a gene-rich region of 1q21 that contains six genes and two pseudogenes within 75 kb. The presence of contiguous, highly homologous pseudogenes for both glucocerebrosidase and metaxin at the locus increases the likelihood of DNA rearrangements in this region. These recombinations can complicate genotyping in patients with Gaucher disease and contribute to the difficulty in interpreting genotype-phenotype correlations in this disorder. In the present study, DNA samples from 240 patients with Gaucher disease were examined using several complementary approaches to identify and characterize recombinant alleles, including direct sequencing, long-template polymerase chain reaction, polymorphic microsatellite repeats, and Southern blots. Among the 480 alleles studied, 59 recombinant alleles were identified, including 34 gene conversions, 18 fusions, and 7 downstream duplications. Twenty-two percent of the patients evaluated had at least one recombinant allele. Twenty-six recombinant alleles were found among 310 alleles from patients with type 1 disease, 18 among 74 alleles from patients with type 2 disease, and 15 among 96 alleles from patients with type 3 disease. Several patients carried two recombinations or mutations on the same allele. Generally, alleles resulting from nonreciprocal recombination (gene conversion) could be distinguished from those arising by reciprocal recombination (crossover and exchange), and the length of the converted sequence was determined. Homozygosity for a recombinant allele was associated with early lethality. Ten different sites of crossover and a shared pentamer motif sequence (CACCA) that could be a hotspot for recombination were identified. These findings contribute to a better understanding of genotype-phenotype relationships in Gaucher disease and may provide insights into the mechanisms of DNA rearrangement in other disorders.  相似文献   

19.
Summary Glucocerebroside -glucosidase (glucocerebrosidase) activity was assayed from cultured fibroblasts of normal individuals, and patients with type 1 (non-neuropathic), type 2 (acute neuropathic), and type 3 (subacute neuropathic) form of Gaucher disease. Residual glucocerebrosidase activity of patients was 8.9 to 17.4% of normal controls, and there was no clear correlation between the level of residual enzyme activity and the different clinical subtypes of the disease. When membrane-bound glucocerebrosidase activity was assayed in the presence of crude brain lipid extracts or purified phosphatidylserine, enzyme from both the normal and type 1 Gaucher fibroblasts was stimulated dramatically (35–60% by crude extracts, 85–90% by phosphatidylserine). This stimulation was not observed with fibroblast glucocerebrosidase of an infantile type 2 and two juvenile type 3 Gaucher patients. The presence of inhibitors of glucocerebrosidase in these type 2 and type 3 Gaucher cells was not detected. Contrary to the mutant enzyme from these Gaucher fibroblasts, glucocerebrosidase from fibroblasts of two adult type 3 Gaucher patients with cerebral involvement was stimulated substantially (72–85%) by phosphatidylserine. When membrane-bound glucocerebrosidase from fibroblasts of the infantile type 2 and juvenile type 3 patients was solubilized with sodium cholate (1% w/v) and delipidated, the phospholipid stimulation of enzyme activity was restored. These findings suggest that considerable clinical and biochemical heterogeneity exists among patients with neuropathic Gaucher disease and that phosphatidylserine activation cannot be used as a reliable indicator in predicting future onset of neurodegeneration in Gaucher patients. The possibility of an aberrant binding of mutant glucocerebrosidase to the lysosomal membrane in juvenile type 3 form of Gaucher disease is discussed.  相似文献   

20.
Gaucher disease is the most common lysosomal storage disease with a high prevalence in the Ashkenazi Jewish population but it is also present in other populations. The presence of eight mutations (1226G, 1448C, IVS2+1, 84GG, 1504T, 1604T, 1342C and 1297T) and the complete deletion of the β-glucocerebrosidase gene was investigated in 25 unrelated non-Jewish patients with Gaucher’s disease in Germany. In the Jewish population, three of these mutations account for more than 90% of all mutated alleles. In addition, relatives of two patients were included in our study. Restriction fragment length polymorphism analysis and sequencing of PCR products obtained from DNA of peripheral blood leukocytes was performed for mutation analysis. Gene deletion was detected by comparison of radioactively labelled PCR fragments of both the functional β-glucocerebrosidase gene and the pseudogene. Among the unrelated patients, 50 alleles were investigated and the mutations identified in 35 alleles (70%), whereas 15 alleles (30%) remained unidentified. The most prevalent mutation in our group of patients was the 1226G (370Asn→Ser) mutation, accounting for 18 alleles (36%), followed by the 1448C (444Leu→Pro) mutation, that was found in 12 alleles (24%). A complete gene deletion was present in two alleles (4%). The IVS1+2 (splicing mutation), the 1504T (463Arg→Cys) as well as the 1342C (409Asp→His) mutations were each present in one allele (2%). None of the alleles carried the 84GG (frameshift), 1604A (496Arg→His) or the 1297T (394Val→Leu) mutation. This distribution is different from the Ashkenazi Jewish population but is similar to other Caucasian groups like the Spanish and Portuguese populations. Our results confirm the variability of mutation patterns in Gaucher patients of different ethnic origin. All patients were divided into nine groups according to their genotype and their clinical status was related to the individual genotype. Genotype/phenotype characteristics of the 1226G, 1448C, and 1342C mutations of previous studies were confirmed by our results. Received: 19 November 1996 / Revised: 29 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号