首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trametes versicolor has a lignin degrading enzyme system, which is also involved in the degradation of diverse recalcitrant compounds. Manganese-dependent peroxidase (MnP) is one of the lignin degrading enzymes in T. versicolor. In this study, a cDNA clone of a putative MnP-coding gene was cloned and transferred into an expression vector (pBARGPE1) carrying a phosphinothricin resistance gene (bar) as a selectable marker to yield the expression vector, pBARTvMnP2. Transformants were generated through genetic transformation using pBARTvMnP2. The genomic integration of the MnP clone was confirmed by PCR with bar-specific primers. One transformant showed higher enzyme activity than the recipient strain did, and was genetically stable even after 10 consecutive transfers on non-selective medium.  相似文献   

2.
The substrate specificity of three ligninase isozymes from the white-rot fungus Trametes versicolor has been investigated using stereochemically defined synthetic dimeric models for lignin. The isozymes have been found to attack non-phenolic beta-O-4 as well as beta-1 lignin model compounds. This finding confirms the classification of the isozymes from T. versicolor as ligninases. The amino-terminal residues of the three isozymes from T. versicolor have been determined using Edman degradation. Minor differences found between the sequences suggest the existence of several structural genes for ligninase in T versicolor. Comparisons have been made with the sequences of three previously reported ligninases from Phanerocompaete chrysosporium, another lignin-degrading fungus. One of the sequences from P. chrysosporium is distinctly more similar to the T. versicolor isozymes than to the other two sequences from P. chrysosporium.  相似文献   

3.
A white-rot basidiomycete Ganoderma lucidum has long been used as a medicinal mushroom in Asia, and it has an array of enzymes important for wood degrading activity. There have been many reports about the ingredients which show health aiding effects. In order to analyze gene functions and introduce foreign genes into this fungus, genetic transformation is required. We have successfully transformed G. lucidum to geneticin resistance using pJS205-1 which has the antibiotic resistance genes against geneticin and phosphinothricin. Many different mutants have been generated during the transformation by restriction enzyme mediated integration, and the transformation yield was 4-17 transformants (microg plasmid DNA)(-1). The plasmid was integrated stably into the recipient chromosome, which was confirmed by PCR with the plasmid-specific primers.  相似文献   

4.
Six putative lignin peroxidase (LIP) genes were isolated from a lambda EMBL3 phage library of the white-rot fungus, Trametes versicolor, using the Phanerochaete chrysosporium LIP cDNA CLG5 as the probe. Sequence analysis of one of the genes, VLG1, showed that its coding region is interrupted by six small introns (49-64 bp) and that it encodes a mature LIP protein (341 aa; Mr: 36,714) that is preceded by a 25 aa signal sequence. This protein has a relatively high degree of aa homology to the N-termini of the LIP proteins purified from T. versicolor and has an aa homology of 55-60% to the LIP proteins of P. chrysosporium, which is comparable to that found between P. chrysosporium and Phlebia radiata LIP proteins.  相似文献   

5.
李维  张义正 《微生物学报》2005,45(5):784-787
利用农杆菌介导的方法成功地对黄孢原毛平革菌(Phanerochaete chrysosporium)进行了遗传转化。将含有潮霉素磷酸转移酶融合基因的双元质粒pCH61300转入根癌农杆菌(Agrobacterium tumefaciens)208中,然后用该转化菌分别感染黄孢原毛平革菌的分生孢子和原生质体,获得16株可能的转化子,经复筛,共获得6株潮霉素抗性水平为100μg/mL的稳定转化子,分生孢子和原生质体的转化频率没有明显差别。PCR检测结果显示,抗性基因已导入黄孢原毛平革菌细胞中;Southern杂交表明,TDNA以单拷贝形式整合到黄孢原毛平革菌基因组中。其中的一个转化子菌落形态与原野生型菌株相比有所不同,菌丝稀薄,分生孢子较少。利用分生孢子转化更为简便易行,无需特殊的设备和制备原生质体,此方法为深入开展该菌的遗传转化研究奠定了基础。  相似文献   

6.
A lignin peroxidase gene was cloned from Streptomyces viridosporus T7A into Streptomyces lividans TK64 in plasmid pIJ702. BglII-digested genomic DNA (4-10 kb) of S. viridosporus was shotgun-cloned into S. lividans after insertion into the melanin (mel+) gene of pIJ702. Transformants expressing pIJ702 with insert DNA were selected based upon the appearance of thiostrepton resistant (tsrr)/mel-colonies on regeneration medium. Lignin peroxidase-expressing clones were isolated from this population by screening of transformants on a tsr-poly B-411 dye agar medium. In the presence of H2O2 excreted by S. lividans, colonies of lignin peroxidase-expressing clones decolorized the dye. Among 1000 transformants screened, 2 dye-decolorizing clones were found. One, pIJ702/TK64.1 (TK64.1), was further characterized. TK64.1 expressed significant extracellular 2,4-dichlorophenol (2.4-DCP) peroxidase activity (= assay for S. viridosporus lignin peroxidase). Under the cultural conditions employed, plasmidless S. lividans TK64 had a low background level of 2.4-DCP oxidizing activity. TK64.1 excreted an extracellular peroxidase not observed in S. lividans TK64, but similar to S. viridosporus lignin peroxidase ALip-P3, as shown by activity stain assays on nondenaturing polyacrylamide gels. The gene was located on a 4 kb fragment of S. viridosporus genomic DNA. When peroxidase-encoding plasmid, pIJ702.LP, was purified and used to transform three different S. lividans strains (TK64, TK23, TK24), all transformants tested decolorized poly B-411. When grown on lignocellulose in solid state processes, genetically engineered S. lividans TK64.1 degraded the lignocellulose slightly better than did S. lividans TK64. This is the first report of the cloning of a bacterial gene coding for a lignin-degrading enzyme.  相似文献   

7.
One-electron oxidation activity, as measured by ethylene generation from 2-keto-4-thiomethylbutyric acid, phenol oxidase activity, and the generation of hydroxyl radical were examined in cultures of the lignin-degrading white-rot basidiomycete fungus, Trametes (Coriolus) versicolor. The activity levels of specific lignin-degrading enzymes and cellulases, as well as the rate of wood degradation, also were examined. The fungus secreted a low-molecular-weight substance (M(r) 1000-5000) that catalyzed a redox reaction between molecular oxygen and an electron donor, to produce the hydroxyl radical via hydrogen peroxide. During wood decay, T. versicolor also produced significant amounts of laccase and lignin peroxidase, carboxymethyl cellulase, and Avicelase. The roles of the hydroxyl radical, phenol oxidases, and cellulases in wood degradation by white-rot fungi are discussed. That the hydroxyl radical produced by the low-molecular-weight substance secreted by T. versicolor results in new phenolic substructures on the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase is suggested.  相似文献   

8.
L J?nsson  P O Nyman 《Biochimie》1992,74(2):177-182
A genomic library of the white-rot fungus Trametes versicolor has been constructed and a gene coding for a lignin peroxidase has been isolated and sequenced. The gene, which contains 6 introns, encodes a protein of 346 amino acid residues, preceded by a tentative 26-residue signal peptide. The deduced amino-terminal sequence agrees with the amino-terminal end of a lignin peroxidase isozyme previously isolated from carbon-limited cultures of T versicolor.  相似文献   

9.
Abstract The relationship between humic acid biodegradation and extracellular lignin peroxidase and Mn-dependent peroxidase activities of two white rot fungi, Phanerochaete chrysosporium and Tranetes versicolor , reported to be lignin degraders, was examined. In experimental conditions promoting culture aeration, particularly with T. versicolor no extracellular peroxidase activity could be detected unless humic acids were included in the culture medium. In the presence of humic acids, appreciable enzymatic activities were determined in the culture filtrate of the two fungi. However, T. versicolor was a more effective degrader than P. chrysosporium , and mineralization assays on synthetic humic acids with culture filtrates showed the important role played by Mn2+. The surfactant properties of humic acids are suggested to be responsible for the increase of enzymatic activities.  相似文献   

10.
11.
12.
杂色云芝漆酶基因(Lcc1)的克隆及在甲醇毕赤酵母中的表达   总被引:11,自引:2,他引:9  
以白腐菌杂色云芝Coriolus versicolor RNA为模板,通过RT-PCR获得漆酶Leel基因的cDNA片段。构建了甲醇酵母表达质粒pMETA-Lccl载体,并将其线性化后用电穿孔法导入Pichia methabolica PMAD16,部分阳性克隆的PCR结果表明Lccl基因已经整合到甲醇毕赤酵母染色体上,经摇瓶培养筛选出表达水平较高的酵母工程菌株。漆酶酶活力达53U/L  相似文献   

13.
AIMS: Four selected fungi were screened for their ability to decolourize a textile effluent and commercial reactive dyes in a solid medium. METHODS AND RESULTS: Ligninolytic enzymes activities (lignin peroxidase, manganese peroxidase and laccase) and siderophores presence were monitored in decolourized plates. RESULTS: The results showed low lignin peroxidase activity and no manganese peroxidase activity was detected for all fungi. Laccase activity was observed in Reactive Blue 19 decolourized plates by Trametes versicolor and Trametes villosa. Siderophores presence was observed in Trametes versicolor, Phanerochaete chrysosporium and Lentinus edodes decolourized plates. CONCLUSION: Lentinus edodes displayed the greatest decolourization ability both in terms of extent and rapidity of decolourization. SIGNIFICANCE AND IMPACT OF THE STUDY: The transformation observed for dyes open the possibility to study siderophores to treat dyes and textile effluents.  相似文献   

14.
Four different Trichoderma strains, T. harzianum CECT 2413, T. asperellum T53, T. atroviride T11 and T. longibrachiatum T52, which represent three of the four sections contained in this genus, were transformed by two different techniques: a protocol based on the isolation of protoplasts and a protocol based on Agrobacterium-mediated transformation. Both methods were set up using hygromycin B or phleomycin resistance as the selection markers. Using these techniques, we obtained phenotypically stable transformants of these four different strains. The highest transformation efficiencies were obtained with the T. longibrachiatum T52 strain: 65-70 transformants/microg DNA when transformed with the plasmid pAN7-1 (hygromycin B resistance) and 280 transformants/107 spores when the Agrobacterium-mediated transformation was performed with the plasmid pUR5750 (hygromycin B resistance). Overall, the genetic analysis of the transformants showed that some of the strains integrated and maintained the transforming DNA in their genome throughout the entire transformation and selection process. In other cases, the integrated DNA was lost.  相似文献   

15.
Biodegradation of endocrine-disrupting bisphenol A was investigated with several white rot fungi (Irpex lacteus, Trametes versicolor, Ganoderma lucidum, Polyporellus brumalis, Pleurotus eryngii, Schizophyllum commune) isolated in Korea and two transformants of T versicolor (strains MrP 1 and MrP 13). I. lacteus degraded 99.4% of 50 mg/l bisphenol A in 3 h incubation and 100% in 12 h incubation. which was the highest degradation rate among the fungal strains tested. T. versicolor degraded 98.2% of 50 mg/l bisphenol A in 12 h incubation. Unexpectedly, the transformant of the Mn-repressed peroxidase gene of T. versicolor, strain MrP 1, degraded 76.5% of 50 mg/l bisphenol A in 12 h incubation, which was a lower degradation rate than wild-type T. versicolor. The removal of bisphenol A by I. lacteus occurred mainly by biodegradation rather than adsorption. Optimum carbon sources for biodegradation of bisphenol A by I. lacteus were glucose and starch, and optimum nitrogen sources were yeast extract and tryptone in a minimal salts medium; however, bisphenol A degradation was higher in nutrient-rich YMG medium than that in a minimal salts medium. The initial degradation of endocrine disruptors was accompanied by the activities of manganese peroxidase and laccase in the culture  相似文献   

16.
The REMI method was used to introduce the plasmid pV2 harboring the hygromycin B phosphotransferase (hph) gene controlled by the Aspergillus nidulans trpC promoter and the trpC terminator into a taxol-producing endophytic fungus BT2. REMI transformation yielded stable transformants capable of continuing to grow on PDA medium containing 125 mug mL(-1) hygromycin B. The transformation efficiency was about 5-6 transformants mug(-1) plasmid DNA. The presence of hph gene in transformants was confirmed by PCR and Southern blot analyses. To the authors' knowledge, this is the first report on the transformation of taxol-producing endophytic fungi by the REMI technique. This study provides an effective approach for improving taxol production of endophytic fungi by the genetic engineering of taxol biosynthetic pathway genes in the future.  相似文献   

17.
The mer operon from a strain of Thiobacillus ferrooxidans (C. Inoue, K. Sugawara, and T. Kusano, Mol. Microbiol. 5:2707-2718, 1991) consists of the regulatory gene merR and an operator-promoter region followed by merC and merA structural genes and differs from other known gram-negative mer operons. We have constructed four potential shuttle plasmids composed of a T. ferrooxidans-borne cryptic plasmid, a pUC18 plasmid, and the above-mentioned mer determinant as a selectable marker. Mercury ion-sensitive T. ferrooxidans strains were electroporated with constructed plasmids, and one strain, Y4-3 (of 30 independent strains tested), was found to have a transformation efficiency of 120 to 200 mercury-resistant colonies per microgram of plasmid DNA. This recipient strain was confirmed to be T. ferrooxidans by physiological, morphological, and chemotaxonomical data. The transformants carried a plasmid with no physical rearrangements through 25 passages under no selective pressure. Cell extracts showed mercury ion-dependent NADPH oxidation activity.  相似文献   

18.
Electrotransformation of Clostridium thermocellum   总被引:3,自引:0,他引:3  
Electrotransformation of several strains of Clostridium thermocellum was achieved using plasmid pIKm1 with selection based on resistance to erythromycin and lincomycin. A custom-built pulse generator was used to apply a square 10-ms pulse to an electrotransformation cuvette consisting of a modified centrifuge tube. Transformation was verified by recovery of the shuttle plasmid pIKm1 from presumptive transformants of C. thermocellum with subsequent PCR specific to the mls gene on the plasmid, as well as by retransformation of Escherichia coli. Optimization carried out with strain DSM 1313 increased transformation efficiencies from <1 to (2.2 +/- 0.5) x 10(5) transformants per micro g of plasmid DNA. Factors conducive to achieving high transformation efficiencies included optimized periods of incubation both before and after electric pulse application, chilling during cell collection and washing, subculture in the presence of isoniacin prior to electric pulse application, a custom-built cuvette embedded in an ice block during pulse application, use of a high (25-kV/cm) field strength, and induction of the mls gene before plating the cells on selective medium. The protocol and preferred conditions developed for strain DSM 1313 resulted in transformation efficiencies of (5.0 +/- 1.8) x 10(4) transformants per micro g of plasmid DNA for strain ATCC 27405 and approximately 1 x 10(3) transformants per micro g of plasmid DNA for strains DSM 4150 and 7072. Cell viability under optimal conditions was approximately 50% of that of controls not exposed to an electrical pulse. Dam methylation had a beneficial but modest (7-fold for strain ATCC 27405; 40-fold for strain DSM 1313) effect on transformation efficiency. The effect of isoniacin was also strain specific. The results reported here provide for the first time a gene transfer method functional in C. thermocellum that is suitable for molecular manipulations involving either the introduction of genes associated with foreign gene products or knockout of native genes.  相似文献   

19.
Bioremediation of paper and pulp mill effluents   总被引:1,自引:0,他引:1  
Pulp and paper mill effluents pollute water, air and soil, causing a major threat to the environment. Several methods have been attempted by various researchers throughout the world for the removal of colour from pulp and paper mill effluents. The biological colour removal process uses several classes of microorganisms--bacteria, algae and fungi--to degrade the polymeric lignin derived chromophoric material. White rot fungi such as Phanerochaete chrysosporium, Corius versicolor, Trametes versicolor etc., are efficient in decolourizing paper and pulp mill effluents. Gliocladium virens, a saprophytic soil fungus decolourised paper and pulp mill effluents by 42% due to the production of hemicellulase, lignin peroxidase, manganese peroxidase and laccase.  相似文献   

20.
A PEG-mediated transformation system for Chainia (NCL 82-5-1) was developed using a broad host range Streptomyces vector, pIJ702. Protoplasts prepared from Chainia (NCL 82-5-1) were regenerated with 5% efficiency. Transformation of the protoplasts with pIJ702 gave 10-20 transformants/micrograms DNA. The low efficiency of transformation is attributed to a restriction system in Chainia; this could be inhibited by treating the protoplasts at 42 degrees C for 10 min just before transformation. The yield of transformants increased 100-fold when pIJ702 was modified by passage in Chainia. Because the plasmid replicon was functional in Chainia and the modified plasmid was stably maintained, the transformation system should be useful for self-cloning in Chainia NCL 82-5-1 of the many commercially important enzymes this strain is known to produce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号