首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A minimum mean square error (MMSE) estimation scheme is employed to identify the synaptic connectivity in neural networks. This new approach can substantially reduce the amount of data and the computational cost involved in the conventional correlation methods, and is suitable for both nonstationary and stationary neuronal firings. Two algorithms are proposed to estimate the synaptic connectivities recursively, one for nonlinear filtering, the other for linear filtering. In addition, the lower and upper bounds for the MMSE estimator are determined. It is shown that the estimators are consistent in quadratic mean. We also demonstrate that the conventional cross-interval histogram is an asymptotic linear MMSE estimator with an inappropriate initial value. Finally, simulations of both nonlinear and linear (Kalman filter) estimates demonstrate that the true connectivity values are approached asymptotically.  相似文献   

3.
Inferring connectivity in neuronal networks remains a key challenge in statistical neuroscience. The “common input” problem presents a major roadblock: it is difficult to reliably distinguish causal connections between pairs of observed neurons versus correlations induced by common input from unobserved neurons. Available techniques allow us to simultaneously record, with sufficient temporal resolution, only a small fraction of the network. Consequently, naive connectivity estimators that neglect these common input effects are highly biased. This work proposes a “shotgun” experimental design, in which we observe multiple sub-networks briefly, in a serial manner. Thus, while the full network cannot be observed simultaneously at any given time, we may be able to observe much larger subsets of the network over the course of the entire experiment, thus ameliorating the common input problem. Using a generalized linear model for a spiking recurrent neural network, we develop a scalable approximate expected loglikelihood-based Bayesian method to perform network inference given this type of data, in which only a small fraction of the network is observed in each time bin. We demonstrate in simulation that the shotgun experimental design can eliminate the biases induced by common input effects. Networks with thousands of neurons, in which only a small fraction of the neurons is observed in each time bin, can be quickly and accurately estimated, achieving orders of magnitude speed up over previous approaches.  相似文献   

4.
It is known that gamma activity is generated by local networks. In this paper we introduced a new approach for estimation of functional connectivity between neuronal networks by measuring temporal relations between peaks of gamma event amplitudes. We have shown in freely moving rats that gamma events recorded between electrodes 1.5 mm apart in the majority of cases, are generated by different neuronal modules interfering with each other. The map of functional connectivity between brain areas during the resting state, created based on gamma event temporal relationships is in agreement with anatomical connections and with maps described by fMRI methods during the resting state. The transition from the resting state to exploratory activity is accompanied by decreased functional connectivity between most brain areas. Our data suggest that functional connectivity between interhemispheric areas depends on GABAergic transmission, while intrahemispheric functional connectivity is kainate receptor dependent. This approach presents opportunities for merging electrographic and fMRI data on brain functional connectivity in normal and pathological conditions.  相似文献   

5.
Identifying the structure and dynamics of synaptic interactions between neurons is the first step to understanding neural network dynamics. The presence of synaptic connections is traditionally inferred through the use of targeted stimulation and paired recordings or by post-hoc histology. More recently, causal network inference algorithms have been proposed to deduce connectivity directly from electrophysiological signals, such as extracellularly recorded spiking activity. Usually, these algorithms have not been validated on a neurophysiological data set for which the actual circuitry is known. Recent work has shown that traditional network inference algorithms based on linear models typically fail to identify the correct coupling of a small central pattern generating circuit in the stomatogastric ganglion of the crab Cancer borealis. In this work, we show that point process models of observed spike trains can guide inference of relative connectivity estimates that match the known physiological connectivity of the central pattern generator up to a choice of threshold. We elucidate the necessary steps to derive faithful connectivity estimates from a model that incorporates the spike train nature of the data. We then apply the model to measure changes in the effective connectivity pattern in response to two pharmacological interventions, which affect both intrinsic neural dynamics and synaptic transmission. Our results provide the first successful application of a network inference algorithm to a circuit for which the actual physiological synapses between neurons are known. The point process methodology presented here generalizes well to larger networks and can describe the statistics of neural populations. In general we show that advanced statistical models allow for the characterization of effective network structure, deciphering underlying network dynamics and estimating information-processing capabilities.  相似文献   

6.
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.  相似文献   

7.
We present an approach for using kinetic theory to capture first and second order statistics of neuronal activity. We coarse grain neuronal networks into populations of neurons and calculate the population average firing rate and output cross-correlation in response to time varying correlated input. We derive coupling equations for the populations based on first and second order statistics of the network connectivity. This coupling scheme is based on the hypothesis that second order statistics of the network connectivity are sufficient to determine second order statistics of neuronal activity. We implement a kinetic theory representation of a simple feed-forward network and demonstrate that the kinetic theory model captures key aspects of the emergence and propagation of correlations in the network, as long as the correlations do not become too strong. By analyzing the correlated activity of feed-forward networks with a variety of connectivity patterns, we provide evidence supporting our hypothesis of the sufficiency of second order connectivity statistics. Action Editor: Carson C. Chow  相似文献   

8.
Heller G  Qin J 《Biometrics》2001,57(3):813-817
We consider the problem of estimation and inference on the mixture parameter in the two-sample problem when sample data from the two distributions as well as from a third population consisting of a mixture of the two are used. Under a general nonparametric model, where the relationship between the two populations is unspecified, we develop a pairwise rank-based likelihood. Simultaneous inference on the mixture proportion and a parameter representing the probability an observation from one population is greater than an observation from the other population is based on this likelihood. Under some regularity conditions, it is shown that the maximum pairwise rank likelihood estimator is consistent and has an asymptotic normal distribution. Simulation results indicate that the performance of this statistic is satisfactory. The methodology is demonstrated on a data set in prostate cancer.  相似文献   

9.
10.
A log-linear modeling framework for selective mixing.   总被引:1,自引:0,他引:1  
Nonrandom mixing can significantly alter the diffusion path of an infectious disease such as AIDS that requires intimate contact. Recent attempts to model this effect have sought a general framework capable of representing both simple and arbitrarily complicated mixing structures, and of solving the balancing problem in a nonequilibrium multigroup population. Log-linear models are proposed here as a general framework for solving the first problem. This approach offers several additional benefits: The parameters used to govern the mixing have a simple, intuitive interpretation, the framework provides a statistically sound basis for the estimation of these parameters from mixing-matrix data, and the resulting estimates are easily integrated into compartmental models for diffusion. A modified selection model is proposed to solve the second problem of generalizing the selection process to nonequilibrium populations. The distribution of contacts under this model is derived and is found to satisfy the assumptions of statistical inference for log-linear models. Together these techniques provide an integrated and flexible framework for modeling the role of selective mixing in the spread of disease.  相似文献   

11.
Genetic stochasticity due to small population size contributes to population extinction, especially when population fragmentation disrupts gene flow. Estimates of effective population size ( N e) can therefore be informative about population persistence, but there is a need for an assessment of their consistency and informative relevance. Here we review the body of empirical estimates of N e for wild populations obtained with the temporal genetic method and published since Frankham's (1995 ) review. Theoretical considerations have identified important sources of bias for this analytical approach, and we use empirical data to investigate the extent of these biases. We find that particularly model selection and sampling require more attention in future studies.
We report a median unbiased N e estimate of 260 (among 83 studies) and find that this median estimate tends to be smaller for populations of conservation concern, which may therefore be more sensitive to genetic stochasticity. Furthermore, we report a median N e/ N ratio of 0.14, and find that this ratio may actually be higher for small populations, suggesting changes in biological interactions at low population abundances. We confirm the role of gene flow in countering genetic stochasticity by finding that N e correlates strongest with neutral genetic metrics when populations can be considered isolated. This underlines the importance of gene flow for the estimation of N e, and of population connectivity for conservation in general. Reductions in contemporary gene flow due to ongoing habitat fragmentation will likely increase the prevalence of genetic stochasticity, which should therefore remain a focal point in the conservation of biodiversity.  相似文献   

12.
Many mechanisms of neural processing rely critically upon the synaptic connectivity between neurons. As our ability to simultaneously record from large populations of neurons expands, the ability to infer network connectivity from this data has become a major goal of computational neuroscience. To address this issue, we employed several different methods to infer synaptic connections from simulated spike data from a realistic local cortical network model. This approach allowed us to directly compare the accuracy of different methods in predicting synaptic connectivity. We compared the performance of model-free (coherence measure and transfer entropy) and model-based (coupled escape rate model) methods of connectivity inference, applying those methods to the simulated spike data from the model networks with different network topologies. Our results indicate that the accuracy of the inferred connectivity was higher for highly clustered, near regular, or small-world networks, while accuracy was lower for random networks, irrespective of which analysis method was employed. Among the employed methods, the model-based method performed best. This model performed with higher accuracy, was less sensitive to threshold changes, and required less data to make an accurate assessment of connectivity. Given that cortical connectivity tends to be highly clustered, our results outline a powerful analytical tool for inferring local synaptic connectivity from observations of spontaneous activity.  相似文献   

13.
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.  相似文献   

14.
Cortical activity is the product of interactions among neuronal populations. Macroscopic electrophysiological phenomena are generated by these interactions. In principle, the mechanisms of these interactions afford constraints on biologically plausible models of electrophysiological responses. In other words, the macroscopic features of cortical activity can be modelled in terms of the microscopic behaviour of neurons. An evoked response potential (ERP) is the mean electrical potential measured from an electrode on the scalp, in response to some event. The purpose of this paper is to outline a population density approach to modelling ERPs.We propose a biologically plausible model of neuronal activity that enables the estimation of physiologically meaningful parameters from electrophysiological data. The model encompasses four basic characteristics of neuronal activity and organization: (i) neurons are dynamic units, (ii) driven by stochastic forces, (iii) organized into populations with similar biophysical properties and response characteristics and (iv) multiple populations interact to form functional networks. This leads to a formulation of population dynamics in terms of the Fokker-Planck equation. The solution of this equation is the temporal evolution of a probability density over state-space, representing the distribution of an ensemble of trajectories. Each trajectory corresponds to the changing state of a neuron. Measurements can be modelled by taking expectations over this density, e.g. mean membrane potential, firing rate or energy consumption per neuron. The key motivation behind our approach is that ERPs represent an average response over many neurons. This means it is sufficient to model the probability density over neurons, because this implicitly models their average state. Although the dynamics of each neuron can be highly stochastic, the dynamics of the density is not. This means we can use Bayesian inference and estimation tools that have already been established for deterministic systems. The potential importance of modelling density dynamics (as opposed to more conventional neural mass models) is that they include interactions among the moments of neuronal states (e.g. the mean depolarization may depend on the variance of synaptic currents through nonlinear mechanisms).Here, we formulate a population model, based on biologically informed model-neurons with spike-rate adaptation and synaptic dynamics. Neuronal sub-populations are coupled to form an observation model, with the aim of estimating and making inferences about coupling among sub-populations using real data. We approximate the time-dependent solution of the system using a bi-orthogonal set and first-order perturbation expansion. For didactic purposes, the model is developed first in the context of deterministic input, and then extended to include stochastic effects. The approach is demonstrated using synthetic data, where model parameters are identified using a Bayesian estimation scheme we have described previously.  相似文献   

15.
Variable Selection for Semiparametric Mixed Models in Longitudinal Studies   总被引:2,自引:0,他引:2  
Summary .  We propose a double-penalized likelihood approach for simultaneous model selection and estimation in semiparametric mixed models for longitudinal data. Two types of penalties are jointly imposed on the ordinary log-likelihood: the roughness penalty on the nonparametric baseline function and a nonconcave shrinkage penalty on linear coefficients to achieve model sparsity. Compared to existing estimation equation based approaches, our procedure provides valid inference for data with missing at random, and will be more efficient if the specified model is correct. Another advantage of the new procedure is its easy computation for both regression components and variance parameters. We show that the double-penalized problem can be conveniently reformulated into a linear mixed model framework, so that existing software can be directly used to implement our method. For the purpose of model inference, we derive both frequentist and Bayesian variance estimation for estimated parametric and nonparametric components. Simulation is used to evaluate and compare the performance of our method to the existing ones. We then apply the new method to a real data set from a lactation study.  相似文献   

16.
Most species are structured and influenced by processes that either increased or reduced gene flow between populations. However, most population genetic inference methods assume panmixia and reconstruct a history characterized by population size changes. This is potentially problematic as population structure can generate spurious signals of population size change through time. Moreover, when the model assumed for demographic inference is misspecified, genomic data will likely increase the precision of misleading if not meaningless parameters. For instance, if data were generated under an n-island model (characterized by the number of islands and migrants exchanged) inference based on a model of population size change would produce precise estimates of a bottleneck that would be meaningless. In addition, archaeological or climatic events around the bottleneck''s timing might provide a reasonable but potentially misleading scenario. In a context of model uncertainty (panmixia versus structure) genomic data may thus not necessarily lead to improved statistical inference. We consider two haploid genomes and develop a theory that explains why any demographic model with structure will necessarily be interpreted as a series of changes in population size by inference methods ignoring structure. We formalize a parameter, the inverse instantaneous coalescence rate, and show that it is equivalent to a population size only in panmictic models, and is mostly misleading for structured models. We argue that this issue affects all population genetics methods ignoring population structure which may thus infer population size changes that never took place. We apply our approach to human genomic data.  相似文献   

17.
Abstract: Satellite tracking is currently used to make inferences to avian populations. Cost of transmitters and logistical challenges of working with some species can limit sample size and strength of inferences. Therefore, careful study design including consideration of sample size is important. We used simulations to examine how sample size, population size, and population variance affected probability of making reliable inferences from a sample and the precision of estimates of population parameters. For populations of >100 individuals, a sample >20 birds was needed to make reliable inferences about questions with simple outcomes (i.e., 2 possible outcomes). Sample size demands increased rapidly for more complex problems. For example, in a problem with 3 outcomes, a sample of >75 individuals will be needed for proper inference to the population. Combining data from satellite telemetry studies with data from surveys or other types of sampling may improve inference strength.  相似文献   

18.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

19.
The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate-based sequencing technologies (pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data obtained from HIV populations within patients harboring drug-resistant virus strains. Our main result is the estimation of the population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population via an expectation–maximization (EM) algorithm. We demonstrate that pyrosequencing reads allow for effective population reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.  相似文献   

20.
Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is suboptimal when the sample size is comparable to or less than the number of features. Such high-dimensional settings are common in modern genomics, where covariance matrix estimation is frequently employed as a method for inferring gene networks. To achieve estimation accuracy in these settings, existing methods typically either assume that the population covariance matrix has some particular structure, for example, sparsity, or apply shrinkage to better estimate the population eigenvalues. In this paper, we study a new approach to estimating high-dimensional covariance matrices. We first frame covariance matrix estimation as a compound decision problem. This motivates defining a class of decision rules and using a nonparametric empirical Bayes g-modeling approach to estimate the optimal rule in the class. Simulation results and gene network inference in an RNA-seq experiment in mouse show that our approach is comparable to or can outperform a number of state-of-the-art proposals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号