首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A controversy of long standing in membrane electrophysio-logy is whether the sodium ion current (INa) and potassium ion current (IK) pass through the membrane in separate channels, or through a single set of channels which conduct first INa and then IK. In support of the latter hypothesis it has been noted that the sodium conductance (gNa) decline, called inactivation, proceeds with about the same time course as the potassium conductance (gK) increase. This could mean that Na+ selective channels are being converted into K+ selective channels. The hypothesis is especially interesting because of the possibility that the carrier postulated in active transport is convertible from Na+ to K+ selectivity1. An explicit statement of the single channel hypothesis and the means for disproving it were given by Mullins2. Because a single channel could not simultaneously conduct INa and IK, disproof requires that membrane conductance (gm) be made somehow to exceed the maximum value of gNa or gK. We report here that inactivation of gNa can be destroyed fairly selectively by the action from inside the axon of the unspecific proteolytic enzymes of pronase. In many cases gm after pronase treatment is greater than maximum gK before treatment, making untenable the single channel hypothesis.  相似文献   

3.
The prion-like determinant [ISP +] manifests itself as an antisuppressor of certain sup35 mutations. To establish that [ISP +] is indeed a new yeast prion, it is necessary to identify the gene that codes for the protein whose prion form is [ISP +]. Analysis of the transformants obtained by transformation of an [ISP +] strain with an insertion gene library revealed three genes controlling the [ISP +] maintenance: UPF1, UPF2, and SFP1. SFP1 codes for a potentially prionogenic protein, which is enriched in Asn and Gln residues, and is thereby the most likely candidate for the [ISP +] structural gene. UPF1 and UPF2 code for components of nonsense-mediated mRNA decay. The [ISP +] elimination caused by UPF1 and UPF2 inactivation was reversible, and Upf1p and Upf2p were not functionally related to phosphatase Ppz1p, which influences the [ISP +] manifestation. Possible mechanisms sustaining the influence of UPF1 and UPF2 on [ISP +] maintenance are discussed.  相似文献   

4.
We examined the effect of concentration on nitrogen uptake patterns for a suburban stream in Maryland and addressed the question: How does NO3 ? uptake change as a function of concentration and how do uptake patterns compare with those found for NH4 +? We applied a longitudinal (stream channel corridor) approach in a forested stream section and conducted short-term nutrient addition experiments in late summer 2004. In the downstream direction, NO3 ? concentrations decreased because of residential development in headwaters and downstream dilution; NH4 + concentrations slightly increased. The uptake patterns for NO3 ? were very different from NH4 +. While NH4 + had a typical negative relationship between first-order uptake rate constant (K c ) and stream size, NO3 ? had a reverse pattern. We found differences for other metrics, including uptake velocity (V f ) and areal uptake rate (U). We attributed these differences to a stream size effect, a concentration effect and a biological uptake capacity effect. For NO3 ? these combined effects produced a downstream increase in K c , V f and U; for NH4 + they produced a downstream decrease in K c and V f , and a not well defined pattern for U. We attributed a downstream increase in NO3 ? uptake capacity to an increase in hyporheic exchange and a likely increase in carbon availability. We also found that K c and V f were indirectly related with concentration. Similar evidence of ‘nutrient saturation’ has been reported in other recent studies. Our results suggest that higher-order uptake models might be warranted when scaling NO3 ? uptake across watersheds that are subject to increased nitrogen loading.  相似文献   

5.
6.

Key message

Novel QTL for salinity tolerance traits have been detected using non-destructive and destructive phenotyping in bread wheat and were shown to be linked to improvements in yield in saline fields.

Abstract

Soil salinity is a major limitation to cereal production. Breeding new salt-tolerant cultivars has the potential to improve cereal crop yields. In this study, a doubled haploid bread wheat mapping population, derived from the bi-parental cross of Excalibur?×?Kukri, was grown in a glasshouse under control and salinity treatments and evaluated using high-throughput non-destructive imaging technology. Quantitative trait locus (QTL) analysis of this population detected multiple QTL under salt and control treatments. Of these, six QTL were detected in the salt treatment including one for maintenance of shoot growth under salinity (QG(15).asl-7A), one for leaf Na+ exclusion (QNa.asl-7A) and four for leaf K+ accumulation (QK.asl-2B.1, QK.asl-2B.2, QK.asl-5A and QK:Na.asl-6A). The beneficial allele for QG(15).asl-7A (the maintenance of shoot growth under salinity) was present in six out of 44 mainly Australian bread and durum wheat cultivars. The effect of each QTL allele on grain yield was tested in a range of salinity concentrations at three field sites across 2 years. In six out of nine field trials with different levels of salinity stress, lines with alleles for Na+ exclusion and/or K+ maintenance at three QTL (QNa.asl-7A, QK.asl-2B.2 and QK:Na.asl-6A) excluded more Na+ or accumulated more K+ compared to lines without these alleles. Importantly, the QK.asl-2B.2 allele for higher K+ accumulation was found to be associated with higher grain yield at all field sites. Several alleles at other QTL were associated with higher grain yields at selected field sites.
  相似文献   

7.
We investigated the pharmacological actions of a slow-releasing H2S donor, GYY 4137; a substrate for the biosynthesis of H2S, l-cysteine and its precursor, N-acetylcysteine on potassium (K+; 50 mM)-evoked [3H]D-aspartate release from bovine isolated retinae using the Superfusion Method. GYY 4137 (10 nM–10 µM), l-cysteine (100 nM–10 µM) and N-acetylcysteine (10 µM–1 mM) elicited a concentration-dependent decrease in K+-evoked [3H]D-aspartate release from isolated bovine retinae without affecting basal tritium efflux. At equimolar concentration of 10 µM, the rank order of activity was as follows: l-cysteine?>?GYY 4137?>?N-acetylcysteine. A dual inhibitor of the biosynthetic enzymes for H2S, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOA; 3 mM) reversed the inhibitory responses caused by GYY 4137, l-cysteine and N-acetylcysteine on K+-evoked [3H]D-aspartate release. Glibenclamide (300 µM), an inhibitor of KATP channels blocked the inhibitory action of GYY 4137 and l-cysteine but not that elicited by N-acetylcysteine on K+-induced [3H]D-aspartate release. The inhibitory effect of GYY 4137 and l-cysteine on K+-evoked [3H]D-aspartate release was reversed by the non-specific inhibitor of nitric oxide synthase (NOS), l-NAME (300 µM). Furthermore, a specific inhibitor of inducible NOS (iNOS), aminoguanidine (10 µM) blocked the inhibitory action of l-cysteine on K+-evoked [3H]D-aspartate release. We conclude that both donors and substrates for H2S production can inhibit amino acid neurotransmission in bovine isolated retinae, an effect that is dependent, at least in part, upon the intramural biosynthesis of this gas, and on the activity of KATP channels and NO synthase.  相似文献   

8.
The interaction of [PSI +] and [PIN +] factors in yeast Saccharomyces cerevisiae is known as the first evidence of prions networks. In [PIN +] cells, Rnq1p prion aggregates work as a template for Sup35p aggregation, which is essential for [PSI +] induction. No additional factors are required for subsequent Sup35p aggregation. Nevertheless, several recent reports provide data that indicate a more complex interplay between these prions. Our results show that the presence of Rnq1p in the cell significantly decreases the loss of [PSI +] prion, which is caused by a double mutation in SUP35 (Q61K, Q62K substitutions in the Sup35 protein). These observations support the existence of interaction networks that converge on a strong linkage of prionogenic and prion-like proteins, and the participation of Rnq1 protein in the maintenance of prion [PSI +].  相似文献   

9.
The tritium-labeled selective agonist of the nonopioid β-endorphin receptor the decapeptide immunorphin ([3H]SLTCLVKGFY) with a specific activity of 24 Ci/mmol was prepared. It was shown that [3H]immunorphin binds with a high affinity to the non-opioid β-endorphin receptor of mouse peritoneal macrophages (K d 2.4 ± 0.1 nM). The specific binding of [3H]immunorphin to macrophages was inhibited by unlabeled β-endorphin (K i of the [3H]immunorphin-receptor complex 2.9 ± 0.2 nM) and was not inhibited by unlabeled naloxone, α-endorphin, γ-endorphin, and [Met5]enkephalin (K i > 10 μM). Thirty fragments of β-endorphin were synthesized, and their ability to inhibit the specific binding of [3H]immunorphin to macrophages was studied. It was found that the shortest peptide having practically the same inhibitory activity as β-endorphin is its fragment 12–19 (K i 3.1 ± 0.3 nM).  相似文献   

10.
Prions are proteins that under the same conditions can exist in two or more conformations, and at least one of the conformations has infectious properties. The prionization of a protein is typically accompanied by its functional inactivation due to sequestration of monomers by the prion aggregates. The most of prions has been identified in the yeast Saccharomyces cerevisiae. One of them is [SWI +], a prion isoform of the Swi1 protein, which is a component of the evolutionarily conserved chromatin remodeling complex SWI/SNF. Earlier, it was shown that the prionization of [SWI +] induces a nonsense suppression, which leads to weak growth of the [SWI +] strains containing mutant variants of the SUP35 gene and the nonsense allele ade1-14 UGA on selective medium without adenine. This effect occurs because of [SWI +] induction that causes a decrease in the amount of the SUP45 mRNA. Strains carrying the SWI1 deletion exhibit significantly higher suppression of the ade1-14 UGA nonsense mutation than the [SWI +] strains. In the present study, we identified genes whose expression is altered in the background of the SWI1 deletion using RNA sequencing. We found that the ade1-14 UGA suppression in the swi1Δ strains is caused by an increase in the expression of this mutant allele of the ADE1 gene. At the same time, the SUP45 expression level in the swi1Δ strains does not significantly differ from the expression level of this gene in the [swi ] strains. Thus, we have shown that the phenotypic effects of Swi1 prionization and deletion are mediated by different molecular mechanisms. Based on these data, we have concluded that the prionization of proteins is not only unequal to their inactivation, but also can lead to the acquisition of novel phenotypic effects and functions.  相似文献   

11.
The seasonal course of xylem sap parameters (electrical conductivity EC, potassium concentration [K+], and pH) of three conifers (Pinus cembra, Picea abies, and Larix decidua) growing at the alpine timberline was monitored. We also looked into possible effects of [K+] and pH on the difference in hydraulic conductivity (Δks). In all studied species, EC, [K+], and pH varied considerably over the year, with pH ranging between 7.3 (February) and 5.8 (June) and [K+] changing between 0.4 (January) and 2.5 mM (June). The Δks was overall low with positive values during winter (up to +20 %) and negative values in summer (-15 % in August). Samples perfused with alkaline solutions showed higher Δks. Xylem sap parameters in all conifers under study were surprisingly variable over the year thus indicating either effects upon seasonal changes in environmental factors or active adjustments, or both. Although Δks values over the year were minor, observed induction of Δks by high pH might indicate a role for hydraulic adjustment in harsh winter periods.  相似文献   

12.
13.
Glucose-6-phosphate dehydrogenases (G6PDs) are important enzymes widely used in bioassay and biocatalysis. In this study, we reported the cloning, expression, and enzymatic characterization of G6PDs from the thermophilic bacterium Thermoanaerobacter tengcongensis MB4 (TtG6PD). SDS-PAGE showed that purified recombinant enzyme had an apparent subunit molecular weight of 60 kDa. Kinetics assay indicated that TtG6PD preferred NADP+ (k cat/K m = 2618 mM?1 s?1, k cat = 249 s?1, K m = 0.10 ± 0.01 mM) as cofactor, although NAD+ (k cat/K m = 138 mM?1 s?1, k cat = 604 s?1, K m = 4.37 ± 0.56 mM) could also be accepted. The K m values of glucose-6-phosphate were 0.27 ± 0.07 mM and 5.08 ± 0.68 mM with NADP+ and NAD+ as cofactors, respectively. The enzyme displayed its optimum activity at pH 6.8–9.0 for NADP+ and at pH 7.0–8.6 for NAD+ while the optimal temperature was 80 °C for NADP+ and 70 °C for NAD+. This was the first observation that the NADP+-linked optimal temperature of a dual coenzyme-specific G6PD was higher than the NAD+-linked and growth (75 °C) optimal temperature, which suggested G6PD might contribute to the thermal resistance of a bacterium. The potential of TtG6PD to measure the activity of another thermophilic enzyme was demonstrated by the coupled assays for a thermophilic glucokinase.  相似文献   

14.
A neuron that is stimulated by rectangular current injections initially responds with a high firing rate, followed by a decrease in the firing rate. This phenomenon is called spike-frequency adaptation and is usually mediated by slow K+ currents, such as the M-type K+ current (I M ) or the Ca2+-activated K+ current (I AHP ). It is not clear how the detailed biophysical mechanisms regulate spike generation in a cortical neuron. In this study, we investigated the impact of slow K+ currents on spike generation mechanism by reducing a detailed conductance-based neuron model. We showed that the detailed model can be reduced to a multi-timescale adaptive threshold model, and derived the formulae that describe the relationship between slow K+ current parameters and reduced model parameters. Our analysis of the reduced model suggests that slow K+ currents have a differential effect on the noise tolerance in neural coding.  相似文献   

15.
16.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

17.
This study evaluated the ability of a hydrothermal time model (HTT) to describe the kinetics of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination under different temperatures (T) and water potentials (ψ) and also to determine the cardinal temperatures of watermelon. Results indicated that ψ influenced germination rate and germination percentage. For this seed lot, cardinal temperatures were 10 °C for T b, 28.34 °C for T o and 40.8 °C for T c in the control (0 MPa) treatment. There was a decrease in hydrotime constant (θ H) when T was increased to T o and then remained constant at supra-optimal temperatures (30 MPah?1). Also, at temperatures above T o, ψ b(50) values increased linearly with T. The k T value (the slope of the relationship between ψ b(50) and T exceeds T o) of this seed lot was calculated as 0.076 MPa°Ch?1. Results this study show that when the HTT model is applied, it can accurately describe ψ b(g) and the course of germination around Ts (R 2 = 0.82). Moreover, the ψ b(50) was estimated to be ?0.96 MPa based on this model. Consequently, the germination response of watermelon for all Ts and ψs can be adequately described by the HTT model and enabling it to be used as a predictive tool in watermelon seed germination simulation models.  相似文献   

18.
The applicability of emission of the N 3Λσ triplet states of molecular hydrogen for spectral diagnostics of the positive column of a dc glow discharge in hydrogen at translational gas temperatures of 360–600 K, specific absorbed powers of 0.8–4.25 W/cm, gas pressures of p = 0.3–15.0 Torr, reduced fields of E/N = 30–130 Td, and electron densities of n e = 4.0 × 109–6.5 × 1010 cm–3 is analyzed by using an advanced level-based semi-empirical collisional?radiative model. It is found that secondary processes make the main contribution to the population and decay of the N 3Λσ = a 3Σ+ g , c 3Π u , g 3Σ+ g , h 3Σ+ g , and i 3Π g triplet states. The dipole-allowed transitions e 3Σ+ g a 3Σ+ g , f 3Σ+ g a 3Σ+ g , g 3Σ+ g and k 3Π u a 3Σ+ g can be used for spectral diagnostics of a dc discharge within a simplified coronal model.  相似文献   

19.
Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/108 cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4°C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows “Michaelis-Menten” kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with Ki = 0.6 mM and Ki = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.  相似文献   

20.
Hypoxia–ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia–ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic–ischemic conditions. The effects of N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn2+-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-d-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K+ and Na+ channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na+ channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K+ and Na+ channels in neurons. Hence, Zn2+ chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号