首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamatergic synapses play a pivotal role in brain excitation. The synaptic response is mediated by the activity of two receptor types (AMPA and NMDA). In the present paper we propose a model of glutamatergic synaptic activity where the fast current generated by the AMPA conductance produces a local depolarization which activates the voltage- and [Mg2+]-dependent NMDA conductance. This cooperative effect is dependent on the biophysical properties of the synaptic spine which can be considered a high input resistance specialized compartment. Herein we present results of simulations where different values of the spine resistance and of the Mg2+ concentrations determine different levels of cooperativeness between AMPA and NMDA receptors in shaping the post-synaptic response.  相似文献   

2.
Activity coregulates quantal AMPA and NMDA currents at neocortical synapses   总被引:18,自引:0,他引:18  
AMPA and NMDA receptors are coexpressed at many central synapses, but the factors that control the ratio of these two receptors are not well understood. We recorded mixed miniature or evoked synaptic currents arising from coactivation of AMPA and NMDA receptors and found that long-lasting changes in activity scaled both currents up and down proportionally through changes in the number of postsynaptic receptors. The ratio of NMDA to AMPA current was similar at different synapses onto the same neuron, and this relationship was preserved following activity-dependent synaptic scaling. These data show that AMPA and NMDA receptors are tightly coregulated by activity at synapses at which they are both expressed and suggest that a mechanism exists to actively maintain a constant receptor ratio across a neuron's synapses.  相似文献   

3.
Glutamate-releasing synapses are essential in fast neuronal signalling. Plasticity at these synapses is important for learning and memory as well as for the activity-dependent control of neuronal development. We have evaluated the trial-to-trial fluctuations of excitatory postsynaptic currents mediated by glutamate receptors of the AMPA and NMDA types in CA1 pyramidal cells. By using the whole cell patch clamp technique in brain slices from young rats, we have demonstrated that the relative variability of AMPA and NMDA receptor mediated responses, expressed as the coefficient of variation, is similar for these two types of responses [Brain Res. 800 (1998) 253-259]. The present paper summarizes and discusses these results in relation to current theories on hippocampal synaptic plasticity, especially with regard to the ideas of glutamate spillover and silent synapses. Our finding of a correspondence between AMPA and NMDA responses with respect to fluctuations is compatible with our previous finding of equal relative changes of the two during activity induced synaptic plasticity. However, the results argue against the glutamate spillover model according to which the effect of glutamate--and hence the induction of plasticity--may spread unspecifically between synapses. But how can silent synapses become functional if no spread of glutamate occurs and no initial signal is present to trigger the functionalization? Is it necessary that NMDA responses are present at these synapses, which are then silent merely with respect to AMPA receptors, or do other alternatives exist? Our discussion aims to elucidate these questions.  相似文献   

4.
AMPA receptor trafficking at excitatory synapses   总被引:46,自引:0,他引:46  
Bredt DS  Nicoll RA 《Neuron》2003,40(2):361-379
Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.  相似文献   

5.
At several cortical synapses glutamate release events can be mediated exclusively by NMDA receptors, with no detectable contribution from AMPA receptors. This observation was originally made by comparing the trial-to-trial variability of the two components of synaptic signals evoked in hippocampal neurons, and was subsequently confirmed by recording apparently pure NMDA receptor-mediated EPSCs with stimulation of small numbers of axons. It has come to be known as the 'silent synapse' phenomenon, and is widely assumed to be caused by the absence of functional AMPA receptors, which can, however, be recruited into the postsynaptic density by long-term potentiation (LTP) induction. Thus, it provides an important impetus for relating AMPA receptor trafficking mechanisms to the expression of LTP, a theme that is taken up elsewhere in this issue. This article draws attention to several findings that call for caution in identifying silent synapses exclusively with synapses without AMPA receptors. In addition, it attempts to identify several missing pieces of evidence that are required to show that unsilencing of such synapses is entirely accounted for by insertion of AMPA receptors into the postsynaptic density. Some aspects of the early stages of LTP expression remain open to alternative explanations.  相似文献   

6.
Xie Z  Huganir RL  Penzes P 《Neuron》2005,48(4):605-618
Activity-dependent remodeling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the mechanisms that coordinate synaptic structural and functional plasticity are not well understood. Here we investigate the signaling pathways that enable excitatory synapses to undergo activity-dependent structural modifications. We report that activation of NMDA receptors in cultured cortical neurons induces spine morphogenesis and activation of the small GTPase Rap1. Rap1 bimodally regulates spine morphology: activated Rap1 recruits the PDZ domain-containing protein AF-6 to the plasma membrane and induces spine neck elongation, while inactive Rap1 dissociates AF-6 from the membrane and induces spine enlargement. Rap1 also regulates spine content of AMPA receptors: thin spines induced by Rap1 activation have reduced GluR1-containing AMPA receptor content, while large spines induced by Rap1 inactivation are rich in AMPA receptors. These results identify a signaling pathway that regulates activity-dependent synaptic structural plasticity and coordinates it with functional plasticity.  相似文献   

7.
《Journal of Physiology》1996,90(5-6):313-315
During the first 2 days of postnatal development, CA1 hippocampal glutamatergic synaptic transmission is based almost exclusively on NMDA receptors and is non-functional at resting potential. Within the following days an increasing number of functionally mature synapses, containing both NMDA and AMPA receptors, were observed. We found that the maturation of the NMDA receptor-mediated synapses could be induced experimentally with a pairing protocol, a process termed functional synapse induction. Our data provide evidence that a LTP-like mechanism involved in the activity-dependent formation of functional glutamergic synapses in the developing hippocampus.  相似文献   

8.
Recent studies have shown that the activation of NMDA receptors can induce rapid changes in dendritic morphology and synaptic recruitment of AMPA receptors in dendritic spines. Here, we analyze the time course of NMDA receptor-induced changes in dendrite morphology and recruitment of AMPA receptors to synapses in cultured neurons. Activation of NMDA receptors causes a rapid transient increase in the size of preexisting spines and then the gradual formation of new dendritic protrusions and spines. NMDA receptor activation also induced GFP-tagged AMPA receptors to cluster in dendrites and to be inserted into the surface of dendritic spines. These results indicate that NMDA receptor activation induces several phases of dendritic plasticity, initial expansion of dendritic spines, followed by the de novo formation of spines and AMPA receptor dendritic clustering and surface expression on spines. Each of these forms of plasticity may have significant effects on the efficacy of synaptic transmission.  相似文献   

9.
Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons lacking EphB expression fail to form dendritic spines in vitro and they develop abnormal spines in vivo. Defective spine formation in the mutants is associated with a drastic reduction in excitatory glutamatergic synapses and the clustering of NMDA and AMPA receptors. We show further that a kinase-defective, truncating mutation in EphB2 also results in abnormal spine development and that ephrin-B2-mediated activation of the EphB receptors accelerates dendritic spine development. These results indicate EphB receptor cell autonomous forward signaling is responsible for dendritic spine formation and synaptic maturation in hippocampal neurons.  相似文献   

10.
Liauw J  Wang GD  Zhuo M 《生理学报》2003,55(4):373-380
谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触。在正常条件下,大多数的突触反应是由谷氨酸的AMPA受体传递的。NMDA受体在静息电位下为镁离子抑制。在被激活时,NMDA受体主要参与突触的可塑性变化。但是,许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应,提示NMDA受体可能参与静息状态的生理功能。此文中,我们在离体的前额扣带回脑片上进行电生理记录,发现NMDA受体参与前额扣带回的突触传递。在重复刺激或近于生理性温度时,NMDA受体传递的反应更为明显。本文直接显示了NMDA受体参与前额扣带回的突触传递,并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用。  相似文献   

11.
12.
Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons   总被引:14,自引:0,他引:14  
We have developed a two-compartment, eight-variable model of a CA3 pyramidal cell as a reduction of a complex 19-compartment cable model [Traub et al, 1991]. Our reduced model segregates the fast currents for sodium spiking into a proximal, soma-like, compartment and the slower calcium and calcium-mediated currents into a dendrite-like compartment. In each model periodic bursting gives way to repetitive soma spiking as somatic injected current increases. Steady dendritic stimulation can produce periodic bursting of significantly higher frequency (8–20 Hz) than can steady somatic input (<8 Hz). Bursting in our model occurs only for an intermediate range of electronic coupling conductance. It depends on the segregation of channel types and on the coupling current that flows back-and-forth between compartments. When the soma and dendrite are tightly coupled electrically, our model reduces to a single compartment and does not burst. Network simulations with our model using excitatory AMPA and NMDA synapses (without inhibition) give results similar to those obtained with the complex cable model [Traub et al, 1991; Traub et al, 1992]. Brief stimulation of a single cell in a resting network produces multiple synchronized population bursts, with fast AMPA synapses providing the dominant synchronizing mechanism. The number of bursts increases with the level of maximal NMDA conductance. For high enough maximal NMDA conductance synchronized bursting repeats indefinitely. We find that two factors can cause the cells to desynchronize when AMPA synapses are blocked: heterogeneity of properties amongst cells and intrinsically chaotic burst dynamics. But even when cells are identical, they may synchronize only approximately rather than exactly. Since our model has a limited number of parameters and variables, we have studied its cellular and network dynamics computationally with relative ease and over wide parameter ranges. Thereby, we identify some qualitative features that parallel or are distinguished from those of other neuronal systems; e.g., we discuss how bursting here differs from that in some classical models.  相似文献   

13.
Under standard conditions, cultured ventral spinal neurons cluster AMPA- but not NMDA-type glutamate receptors at excitatory synapses on their dendritic shafts in spite of abundant expression of the ubiquitous NMDA receptor subunit NR1. We demonstrate here that the NMDA receptor subunits NR2A and NR2B are not routinely expressed in cultured spinal neurons and that transfection with NR2A or NR2B reconstitutes the synaptic targeting of NMDA receptors and confers on exogenous application of the immediate early gene product Narp the ability to cluster both AMPA and NMDA receptors. The use of dominant-negative mutants of GluR2 further showed that the synaptic targeting of NMDA receptors is dependent on the presence of synaptic AMPA receptors and that synaptic AMPA and NMDA receptors are linked by Stargazin and a MAGUK protein. This system of AMPA receptor-dependent synaptic NMDA receptor localization was preserved in hippocampal interneurons but reversed in hippocampal pyramidal neurons.  相似文献   

14.
大脑中神经元突触间的信号传递是由许多神经递质受体介导的。在过去,Richard L.Huganir实验室一直致力于神经递质受体功能调节的分子机制。而最近,该实验室又聚焦到大脑中一种最主要的兴奋性受体的研究——谷氨酸受体。谷氨酸受体主要可以分为两大类:AMPA受体和NMDA受体。AMPA受体主要介导了快速的兴奋性突触传递;而NMDA受体则在神经可塑性和发育中起到重要作用。实验发现,AMPA受体和NMDA受体都可以被一系列的蛋白激酶磷酸化,而磷酸化的水平则直接影响了这些受体的功能特性,包括通道电导和受体膜定位等。AMPA受体磷酸化的水平同时还在学习和记忆的细胞模型中发生改变,如长时程增强(LTP)和长时程抑制(LTD)。此外,AMPA受体中GluR1亚单位的磷酸化对于各种形式的可塑性以及空间记忆的维持有重要的作用。实验室主要研究突触部位谷氨酸受体在亚细胞水平的定位和聚集的分子机制。最近,一系列可以直接或间接与AMPA和NMDA受体相互作用的蛋白质得以发现,其中包括一个新发现的蛋白家族GRIPs(glutamate receptor interacting proteins)。GRIPs可以直接和AMPA受体的GluR2/3亚单位的C端结合。GRIPs包含7个PDZ结构域,可以介导蛋白与蛋白直接的相互连接,从而把各个AMPA受体交互连接在一起并与其他蛋白相连。另外,GluR2亚单位的c端还可以和兴奋性突触中的蛋白激酶C结合蛋白(PICK1)的PDZ结构域相互作用。另外,GluR2亚单位的C端也可以与一种参与膜融合的蛋白NSF相互作用。这些与AMPA受体相互作用的蛋白质对于受体在膜上的运输以及定位有至关重要的作用。同时,受体与PICK1和GRIP的结合对于小脑运动学习中的LTD有重要作用。总体上说,该实验室发现了一系列可以调节神经递质受体功能的分子机制,这些工作提示受体功能的调节可能是?  相似文献   

15.
NMDA receptors are movin' in   总被引:5,自引:0,他引:5  
Dynamic modulation of the number of postsynaptic glutamate receptors is considered one of the main mechanisms for altering the strength of excitatory synapses in the central nervous system (CNS). However, until recently N-methyl-d-aspartate (NMDA) receptors were considered relatively stable once in the plasma membrane, especially in comparison with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors that are internalized at a high rate. A series of recent studies has changed this viewpoint by revealing that NMDA receptors are subject to constitutive as well as agonist-induced internalization through clathrin-mediated endocytosis. Surprisingly, agonist-induced internalization is not dependent on current flow through the NMDA channel, and the receptors are primed for this type of internalization by selective stimulation of the glycine site but not of the glutamate site. Endocytosis of NMDA receptors provides a fundamental mechanism for dynamic regulation of the number of NMDA receptors at synapses, which might be important for physiological and pathological functioning of the CNS.  相似文献   

16.
Cottrell JR  Borok E  Horvath TL  Nedivi E 《Neuron》2004,44(4):677-690
Long-term maintenance and modification of synaptic strength involve the turnover of neurotransmitter receptors. Glutamate receptors are constitutively and acutely internalized, presumptively through clathrin-mediated receptor endocytosis. Here, we show that cpg2 is a brain-specific splice variant of the syne-1 gene that encodes a protein specifically localized to a postsynaptic endocytotic zone of excitatory synapses. RNAi-mediated CPG2 knockdown increases the number of postsynaptic clathrin-coated vesicles, some of which traffic NMDA receptors, disrupts the constitutive internalization of glutamate receptors, and inhibits the activity-induced internalization of synaptic AMPA receptors. Manipulating CPG2 levels also affects dendritic spine size, further supporting a function in regulating membrane transport. Our results suggest that CPG2 is a key component of a specialized postsynaptic endocytic mechanism devoted to the internalization of synaptic proteins, including glutamate receptors. The activity dependence and distribution of cpg2 expression further suggest that it contributes to the capacity for postsynaptic plasticity inherent to excitatory synapses.  相似文献   

17.
Learning-related plasticity at excitatory synapses in the mammalian brain requires the trafficking of AMPA receptors and the growth of dendritic spines. However, the mechanisms that couple plasticity stimuli to the trafficking of postsynaptic cargo are poorly understood. Here we demonstrate that myosin Vb (MyoVb), a Ca2+-sensitive motor, conducts spine trafficking during long-term potentiation (LTP) of synaptic strength. Upon activation of NMDA receptors and corresponding Ca2+ influx, MyoVb associates with recycling endosomes (REs), triggering rapid spine recruitment of endosomes and local exocytosis in spines. Disruption of MyoVb or its interaction with the RE adaptor Rab11-FIP2 abolishes LTP-induced exocytosis from REs and prevents both AMPA receptor insertion and spine growth. Furthermore, induction of tight binding of MyoVb to actin using an acute chemical genetic strategy eradicates LTP in hippocampal slices. Thus, Ca2+-activated MyoVb captures and mobilizes REs for AMPA receptor insertion and spine growth, providing a mechanistic link between the induction and expression of postsynaptic plasticity.  相似文献   

18.
Excitatory postsynaptic currents (EPSCs) were studied in the CA1 pyramidal cells of rat hippocampal slices. Components mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) and by N-methyl-D-aspartate (NMDA) receptors were separated pharmacologically. Quantal parameters of AMPA and NMDA receptor-mediated EPSCs were obtained using both maximal likelihood and autocorrelation techniques. Enhancement of transmitter release with 4-aminopyridine caused a significant increase in quantal size of NMDA EPSC. This was accompanied by a slowing of the EPSC decay. The maximal number of quanta in the NMDA current was unchanged, while the probability of quantal event dramatically enhanced. In contrast, neither the quantal size nor the kinetics of AMPA EPSC was altered by 4-aminopyridine, while the maximal number of quanta increased. These changes in the quantal parameters are consistent with a transition to multivesicular release of the neurotransmitter. Spillover of excessive glutamate on the nonsynaptic areas of dendritic spines causes an increase in the quantal size of NMDA synaptic current. The difference in quantal behavior of AMPA and NMDA EPSCs implies that different mechanisms underlie their quantization: the additive response of nonsaturated AMPA receptors contrasts with the variable involvement of saturated intrasynaptic and nonsaturated extrasynaptic NMDA receptors.  相似文献   

19.
Mobile NMDA receptors at hippocampal synapses   总被引:30,自引:0,他引:30  
Tovar KR  Westbrook GL 《Neuron》2002,34(2):255-264
Glutamate receptors are concentrated in the postsynaptic complex of central synapses. This implies a highly organized and stable postsynaptic membrane with tightly anchored receptors. Recent reports of rapid AMPA receptor insertion and removal at synapses have challenged this view. We examined the stability of synaptic NMDA receptors on cultured hippocampal neurons using the open-channel blockers (+)-MK-801 and ketamine to tag synaptic NMDA receptors. NMDA receptor-mediated EPSCs showed an anomalous recovery following "irreversible" MK-801 block. The recovery could not be attributed to MK-801 unbinding or insertion of new receptors, suggesting that membrane receptors had moved laterally into the synapse. At least 65% of synaptic NMDA receptors were mobile. Our results indicate that NMDA receptors can move laterally between synaptic and extrasynaptic pools, providing evidence for a dynamic organization of synaptic NMDA receptors in the postsynaptic complex.  相似文献   

20.
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号