首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme has been reported to exert a control over its own biosynthesis and to affect the erythroid differentiation process at different sites. In this study, succinylacetone, a powerful inhibitor of δ-aminolevulinic acid dehydrase was used to block heme synthesis and to study the effects of heme depletion on the dimethylsulfoxide (DMSO)-mediated induction of the heme pathway enzymes in Friend virus-transformed erythroleukemia cells. The presence of succinylacetone in the medium during the DMSO treatment (1) potentiates the induction of δ-aminolevulinic acid synthetase (the first enzyme of the pathway) and this effect is reversed by the addition of exogenous hemin; (2) does not affect the induction of δ-aminolevulinic acid dehydrase (the second enzyme); (3) prevents the induction of porphobilinogen deaminase (the third enzyme), since no increase could be detected in either the enzyme activity or the immunoreactive protein and this effect could not be reversed by the addition of exogenous hemin; (4) does not affect the induction of ferrochelatase. The possible role of heme or of intermediate metabolites of the pathway on the induction of these enzymes during the erythroid differentiation process is discussed.  相似文献   

2.
Techniques of cell separation were used to isolate murine erythroid precursors at different states of maturation. Cells were studied before and after short-term incubation in the presence or absence of erythropoietin. Complementary results were obtained by direct examination of the cell fractions and by the short-term culture experiments. Indices of heme synthesis, including incorporation of 59Fe or [2-14C]glycine into heme and activity of delta-aminolevulinic acid synthetase, were already well developed in the least mature cells, chiefly pronormoblasts. Activity then rose moderately in the cell fractions consisting primarily of basophilic and polychromatophilic normoblasts, and fell off with further increases in cell maturity. On short-term culture in the presence of erythropoietin, activity declined with increasing cell maturation except in the least mature fraction where the original level of activity was maintained. By contrast, synthesis of labeled hemoglobin ([3H]leucine) was very low in the least mature cell fractions and rose progressively with increasing cell maturity. The rate of hemoglobin synthesis increase in cells at all stages of maturation when cultured in the presence of erythropoietin. Despite the different patterns observed for heme synthesis and hemoglobin synthesis, both synthetic activities were consistently higher in cells cultured with erythropoietin as compared to controls. These findings suggest that erythropoietin stimulates biochemical differentiation of erythroid precursors at various stages of maturation. They also demonstrate an asynchronism between heme synthesis and hemoglobin syhthesis; heme synthesis is already well developed in the least mature erythroid cells and begins to diminish as the capacity for hemoglobin synthesis continues to rise.  相似文献   

3.
Messenger RNA (mRNA) for globin was isolated from spleens of irradiated mice in which erythroid differentiation was induced by a bone marrow graft. The globin mRNA was isolated either by means of sucrose gradients of reticulocyte polysomal RNA or by affinity chromatography of total spleen RNA on poly (U)-sepharose. The globin mRNA was tested in a wheat embryo cell-free system. The appearance of mRNA in the spleen erythroid colonies was correlated with other parameters of erythroid differentiation such as globin synthesis, activity of delta-aminolevulinic acid synthetase and iron uptake. Poly(A) containing mRNA did appear already on the 3rd day after grafting. However, significant translational activity of globin mRNA could be demonstrated only one day later together with the increase in globin synthesis and delta-aminolevulinic acid synthetase and enhanced iron uptake. In the second part of this study mouse spleen cells rich in erythroid elements were incubated with a specific heme synthesis inhibitor (isonicotinic acid hydrazide, INH) and the synthesis of 9 S RNA was estimated. It was found that a 40-minute incubation with INH reduced uridine incorporation into 9 S RNA fraction by about 40%.  相似文献   

4.
5.
The effects of 4,6-dioxoheptanoic acid (succinylacetone, SA), an inhibitor of delta-aminolevulinic acid dehydratase, on total iron uptake, heme synthesis, and globin synthesis were studied in rat marrow cells in culture in order to examine the coordination of heme and globin synthesis. SA inhibited heme synthesis in both control and erythropoietin-stimulated cells in a dose-dependent fashion; at 10(-3) M, inhibition was complete, whereas at 10(-7) M, there was no significant effect. Inhibition of total iron uptake was also dose-dependent although, at 10(-3) M, it was not complete. The inhibition of heme synthesis by SA was partially overcome by addition of 10(-4) M porphobilinogen or protoporphyrin IX. SA caused an almost complete suppression of globin formation in both erythropoietin-stimulated and unstimulated cells as early as five hours after the addition of the inhibitor. When inhibition of heme synthesis was incomplete, globin synthesis was partially inhibited. These results indicate that heme synthesis is required for erythropoietin-mediated induction of globin synthesis in cultured bone marrow cells.  相似文献   

6.
Enzymes of heme synthesis, porphyrins and heme content of regenerating rat livers were examined. During the first three days of regeneration the weights of livers of one-third and two-third hepatectomized rats increased 1.5-fold and 2.7-fold and the activity of porphobilinogen deaminase increased 2-fold and 4-fold and was inversely correlated with ferrochelatase activity. delta-Aminolevulinic acid synthase and delta-aminolevulinic acid dehydratase activities were reduced. Concomitantly an increase in the concentration of porphyrins and a decrease in that of heme were observed. The changes in the biosynthetic pathway of heme during rapid growth of the liver are discussed.  相似文献   

7.
Coproporphyrinogen oxidase (CPOX), the sixth enzyme in the heme-biosynthetic pathway, catalyzes oxidative decarboxylation of coproporphyrinogen to protoporphyrinogen and is located in the intermembrane space of mitochondria. To clarify the importance of CPOX in the regulation of heme biosynthesis in erythroid cells, we established human erythroleukemia K562 cells stably expressing mouse CPOX. The CPOX cDNA-transfected cells had sevenfold higher CPOX activity than cells transfected with vector only. Expression of ferrochelatase and heme content in the transfected cells increased slightly compared with the control. When K562 cells overexpressing CPOX were treated with delta-aminolevulinic acid (ALA), most became benzidine-positive without induction of the expression of CPOX or ferrochelatase, and the heme content was about twofold higher than that in ALA-treated control cells. Increases in cellular heme concomitant with a marked induction of the expression of heme-biosynthetic enzymes, including CPOX, ferrochelatase and erythroid-specific delta-aminolevulinic acid synthase, as well as of alpha-globin synthesis, were observed when cells were treated with transforming growth factor (TGF)beta 1. These increases in the transfected cells were twice those in control cells, indicating that overexpression of CPOX enhanced induction of the differentiation of K562 cells mediated by TGF beta 1 or ALA. Conversely, the transfection of antisense oligonucleotide to human CPOX mRNA into untreated and TGF beta 1-treated K562 cells led to a decrease in heme production compared with sense oligonucleotide-transfected cells. These results suggest that CPOX plays an important role in the regulation of heme biosynthesis during erythroid differentiation.  相似文献   

8.
In this study, we demonstrated that benzene and its metabolites, phenol and hydroquinone, were toxic to human burst-forming unit-erythroid (BFU-E) growth, hydroquinone being the most toxic. Phenol (10(-4) M) was also found to have a marked toxicity on stromal cell colony formation. BFU-E binding with human-tumor necrosis factor (rHu-TNF) was linear with the number of BFU-E colonies. Recombinant rHu-TNF suppressed BFU-E growth in a dose-dependent manner and this was reversed with anti-TNF antibody. Binding studies of rHu-TNF for human K562 cells indicated that K562 cells have a binding constant of approximately 1075 per cell. The heme pathway enzymes, uroporphyrinogen deaminase, and heme oxygenase activities were measured in BFU-E cultures exposed to iron, interleukins (1 and 2), and various lymphocyte and macrophage-conditioned media with or without hemin. In most instances, hemin was found to stimulate the heme synthetic pathway in the presence of these agents. Iron and adherent (macrophage) cell conditioned media (CM) were found to stimulate heme oxygenase activity. Macrophage CM was found to suppress erythropoiesis in contrast to phytohemagglutinin-stimulated leukocyte (PHAL)-CM, which enhanced erythroid growth. In addition, porphobilinogen deaminase levels were greater in 14-day cultures containing hemin plus PHAL-CM as compared with hemin alone. These results are discussed with respect to the generation of hematopoietic inhibitory-stimulatory factors by the marrow microenvironment and their effects on heme synthesis and degradation.  相似文献   

9.
During dimethyl sulfoxide (DMSO)-stimulated differentiation of murine erythroleukemia (MEL) cells, one of the early events is the induction of the heme biosynthetic pathway. While recent reports have clearly demonstrated that GATA-1 is involved in the induction of erythroid cell-specific forms of 5-aminolevulinate synthase (ALAS-2) and porphobilinogen (PBG) deaminase and that cellular iron status plays a regulatory role for ALAS-2, little is known about regulation of the remainder of the pathway. In the current study, we have made use of a stable MEL cell mutant (MEAN-1) in which ALAS-2 enzyme activity is not induced by DMSO, hexamethylene bisacetamide (HMBA), or butyric acid. In this cell line, addition of 2% DMSO to growing cultures results in the normal induction of PBG deaminase and coproporphyrinogen oxidase but not in the induction of the terminal two enzymes, protoporphyrinogen oxidase and ferrochelatase. These DMSO-treated cells did not produce mRNA for beta-globin and do not terminally differentiate. In addition, the cellular level of ALAS activity declines rapidly after addition of DMSO, indicating that ALAS-1 must turn over rapidly at this time. Addition of 75 microM hemin alone to the cultures did not induce cells to terminally differentiate or induce any of the pathway enzymes. However, the simultaneous addition of 2% DMSO and 75 microM hemin caused the cells to carry out a normal program of terminal erythroid differentiation, including the induction of ferrochelatase and beta-globin. These data suggest that induction of the entire heme biosynthetic pathway is biphasic in nature and that induction of the terminal enzymes may be mediated by the end product of the pathway, heme. We have introduced mouse ALAS-2 cDNA into the ALAS-2 mutant cell line (MEAN-1) under the control of the mouse metallothionein promoter (MEAN-RA). When Cd and Zn are added to cultures of MEAN-RA in the absence of DMSO, ALAS-2 is induced but erythroid differentiation does not occur and cells continue to grow normally. In the presence of metallothionein inducers and DMSO, the MEAN-RA cells induce in a fashion similar to that found with the wild-type 270 MEL cells. Induction of the activities of ALAS, PBG deaminase, coproporphyrinogen oxidase, and ferrochelatase occurs. In cultures of MEAN-RA where ALAS-2 had been induced with Cd plus Zn 24 h prior to DMSO addition, onset of heme synthesis occurs more rapidly than when DMSO and Cd plus Zn are added simultaneously. This study reveals that induction of ALAS-2 alone is not sufficient to induce terminal differentiation of the MEAN-RA cells, and it does not appear that ALAS-2 alone is the rate-limiting enzyme of the heme biosynthetic pathway during MEL cell differentiation.  相似文献   

10.
In many types of cells the synthesis of delta-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from our laboratory with reticulocytes suggest that the rate of iron uptake from transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels of Fe-Tf (20 microM). Furthermore, in induced Friend cells 100 microM Fe-SIH stimulated 2-14C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. In contrast, Fe-SIH, even when added in high concentrations, did not stimulate heme synthesis in uninduced Friend cells but was able to do so as early as 24 to 48 h following induction. In addition, contrary to previous results with rabbit reticulocytes, Fe-SIH also stimulated globin synthesis in induced Friend cells above the level seen with saturating concentrations of transferrin. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells.  相似文献   

11.
Altered hepatic microsomal drug metabolism has been reported to occur in afflicted with hyperbilirubinemia. Similarities of the chemical structures of hydroxymethylbilane, an intermediate in the biosynthesis of uroporphyrinogen, to bilirubin prompted investigations of the effect of bilirubin on the activity of uroporphyrinogen I synthase (porphobilinogen deaminase, EC 4.3.1.8) and the biosynthesis of heme. Bilirubin was found to be a reversible, noncompetitive inhibitor of uroporphyrinogen I synthase. The inhibition constant (Ki) for bilirubin was 1.5 microM. Bile acids had no effect on rat hepatic uroporphyrinogen I synthase activity. Hyperbilirubinemia was achieved in rats by biliary ligation in order to investigate whether elevated levels of bilirubin impair the biosynthesis of hepatic heme in vivo. The relative rate of heme biosynthesis, as measured by the rate of incorporation of delta-[4-14C]aminolevulinic acid into heme, was decreased 59% 24 h after biliary obstruction. The levels of hepatic microsomal heme and cytochrome P-450 were decreased by 43 and 40%, respectively, 72 h after biliary obstruction. The activities of hepatic delta-aminolevulinic acid synthase and uroporphyrinogen I synthase were increased by 39 and 46%, respectively, 72 h after biliary obstruction. During the 48- to 72-h period following biliary obstruction, the urinary excretion of porphobilinogen and uroporphyrin was increased 3.0- and 3.5-fold, respectively, whereas, the urinary excretion of delta-aminolevulinic acid was not altered. During this 48-to 72-h time interval following biliary obstruction, 100% of the uroporphyrin was excreted as isomer I. These results indicate that bilirubin is capable of depressing the biosynthesis of rat hepatic heme and thus cytochrome P-450-mediated drug metabolism by inhibition of the formation of uroporphyrinogen. These findings are a plausible mechanism for reports of impaired clearance of various drugs in patients afflicted with hyperbilirubinemic disease states.  相似文献   

12.
The mechanism of action of erythropoietin   总被引:8,自引:0,他引:8  
  相似文献   

13.
14.
15.
16.
The role of heme in erythroid development is investigated in erythroleukemic (Friend) cells. Exogenous hemin induces the accumulation of globin mRNA and globin protein in T3-Cl2 erythroleukemia cells to levels comparable to those induced by polar solvents, such as dimethylsulfoxide (DMSO). The hemin concentration required for maximal induction (10?4 M) is the same as that which stimulates globin message translation in reticulocytes or cell-free reticulocyte lysates. Hemin and DMSO together cause T3-Cl2 cells to accumulate 8–9 fold more globin mRNA than either inducer individually. The kinetics of globin mRNA induction in hemin as compared to DMSO are very different: globin message accumulation begins 4 hr after hemin addition, but not until 30–40 hr after DMSO addition. Biliverdin induces 20–40 fold less hemoglobin than hemin; delta-aminolevulinic acid and porphobilinogen do not induce.  相似文献   

17.
18.
Some late complications of diabetes are associated with alterations in the structure and function of proteins due to glycation and free radicals generation. Aspirin inhibits protein glycation by acetylation of free amino groups. In the diabetic status, it was demonstrated that several enzymes of heme pathway were diminished. The aim of this work has been to investigate the in vivo effect of short and long term treatment with acetylsalicylic acid in streptozotocin induced diabetic mice. In both treatments, the acetylsalicylic acid prevented delta-aminolevulinic dehydratase and porphobilinogen deaminase inactivation in diabetic mice and blocked the accumulation of lipoperoxidative aldehydes. Catalase activity was significantly augmented in diabetic mice and the long term treatment with aspirin partially reverted it. We propose that oxidative stress might play an important role in streptozotocin induced diabetes. Our results suggest that aspirin can prevent some of the late complications of diabetes, lowering glucose concentration and probably inhibiting glycation by acetylation of protein amino groups.  相似文献   

19.
The in vivo effect of the known herbicide, paraquat, on both hepatic oxidative stress and heme metabolism was studied. A marked increase in lipid peroxidation and a decrease in reduced glutathione (GSH) content were observed 1 h after paraquat administration. The activity of liver antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase was decreased 3 h after paraquat injection. Heme oxygenase-1 induction started 9 h after treatment, peaking at 15 h. delta-aminolevulinic acid synthase induction occurred once heme oxygenase had been enhanced, reaching its maximum (1.5-fold of control) at 16 h. delta-aminolevulinic acid dehydratase activity was 40% inhibited at 3 h showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of alpha-tocopherol (35 mmol/kg body weight) 2 h before paraquat treatment entirely prevented the increase in thiobarbituric acid reactive substances (TBARS) content, the decrease in GSH levels as well as heme oxygenase-1 and delta-aminolevulinic acid synthase induction. This study shows that oxidative stress produced by paraquat leads to an increase in delta-aminolevulinic acid synthase and heme oxygenase-1 activities, indicating that the herbicide affects both heme biosynthesis and degradation.  相似文献   

20.
In mammalian cells, heme can be degraded by heme-oxygenases (HO). Heme-oxygenase 1 (HO-1) is known to be the heme inducible isoform, whereas heme-oxygenase 2 (HO-2) is the constitutive enzyme. Here we investigated the presence of HO during erythroid differentiation in human bone marrow erythroid precursors and K562 cells. HO-1 mRNA and protein expression levels were below limits of detection in K562 cells. Moreover, heme was unable to induce HO-1, at the protein and mRNA profiles. Surprisingly, HO-2 expression was inhibited upon incubation with heme. To evaluate the physiological relevance of these findings, we analyzed HO expression during normal erythropoiesis in human bone marrow. Erythroid precursors were characterized by lack of significant expression of HO-1 and by progressive reduction of HO-2 during differentiation. FLVCR expression, a recently described heme exporter found in erythroid precursors, was also analyzed. Interestingly, the disruption in the HO detoxification system was accompanied by a transient induction of FLVCR. It will be interesting to verify if the inhibition of HO expression, that we found, is preventing a futile cycle of concomitant heme synthesis and catabolism. We believe that a significant feature of erythropoiesis could be the replacement of heme breakdown by heme exportation, as a mechanism to prevent heme toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号