共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang JY 《Amino acids》2007,33(2):241-252
Summary. The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through
strict regulation of epithelial cell proliferation, growth arrest, and apoptosis. Polyamines are necessary for normal intestinal
mucosal growth and decreasing cellular polyamines inhibits cell proliferation and disrupts epithelial integrity. An increasing
body of evidence indicates that polyamines regulate intestinal epithelial cell renewal by virtue of their ability to modulate
expression of various genes and that growth inhibition following polyamine depletion results primarily from the activation
of growth-inhibiting genes rather than a simple decrease in expression of growth-promoting genes. In this review article,
we will focus on changes in expression of growth-inhibiting genes following polyamine depletion and further analyze in some
detail the mechanisms through which mRNA stability is regulated by RNA-binding proteins. 相似文献
2.
3.
Gioconda San-Blas Felipe San-Blas Françoise Sorais Belisario Moreno José Ruiz-Herrera 《Archives of microbiology》1996,166(6):411-413
Putrescine and spermidine were the only polyamines found inParacoccidioides brasiliensis, a dimorphic fungus pathogenic for humans. Free polyamines (putrescine>spermidine) increased during the first 24 h of yeast growth, with a second peak at 42 h, and also during the first 12 h of mycelium-to-yeast transition (spermidine>putrescine). Conjugated and bound polyamines were also quantified. 1,4-Diamino-2-butanone decreased free putrescine and spermidine accumulation by inhibiting the activity of ornithine decarboxylase. The increase in free polyamines corresponds to bud emergence in yeast growth and to the mycelium-to-yeast transition ofP. brasiliensis.Abbreviations
DAB
1,4-Diamino-2-butanone
-
Y
Yeasts
-
M
Mycelia
-
ODC
Ornithine decarboxylase 相似文献
4.
Polyamines in rapid growth and cancer. 总被引:79,自引:0,他引:79
5.
The effect of the polyamine spermidine on the growth of crown gall tumors was determined using the potato disc bioassay. Addition of lmM spermidine resulted in a 30–50% increase in tumor growth. The spermidine effect was found to be biphasic, with lmM being optimal. Closely related polyamines including spermine, as well as other nitrogen containing compounds such as arginine and alanine, failed to promote tumor growth or inhibited the growth of these tumors. Endogenous levels of spermidine in crown gall tumor tissue were consistently greater than those of corresponding normal potato tissue. Rapidly dividing normal potato tissue derived from buds also contained elevated spermidine levels. 相似文献
6.
7.
Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed. 相似文献
8.
Polyamines and pancreatic growth induced by caerulein 总被引:3,自引:0,他引:3
Activation of polyamine metabolism may be important to initiation of pancreatic cell growth. We are reporting that such activation did occur during pancreatic growth initiation by caerulein, a cholecystokinin analog. Maximal increases in total putrescine (319%), spermidine (63%) and spermine (50%) were observed 12, 96 and 96 hr respectively after the beginning of the caerulein treatment. This time period coincides with pancreatic hypertrophy and hyperplasia as characterized by increased cell mass and DNA content. Rates of pancreatic weight and DNA content increases were significantly correlated with total spermidine and spermine contents. These data suggest that polyamine biosynthesis is closely associated with pancreatic growth. 相似文献
9.
Rao JN Guo X Liu L Zou T Murthy KS Yuan JX Wang JY 《American journal of physiology. Cell physiology》2003,284(4):C848-C859
Polyamines are required for the early phase of mucosal restitution that occurs as a consequence of epithelial cell migration. Our previous studies have shown that polyamines increase RhoA activity by elevating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) through controlling voltage-gated K(+) channel expression and membrane potential (E(m)) during intestinal epithelial restitution. The current study went further to determine whether increased RhoA following elevated [Ca(2+)](cyt) activates Rho-kinase (ROK/ROCK) resulting in myosin light chain (MLC) phosphorylation. Studies were conducted in stable Cdx2-transfected intestinal epithelial cells (IEC-Cdx2L1), which were associated with a highly differentiated phenotype. Reduced [Ca(2+)](cyt), by either polyamine depletion or exposure to the Ca(2+)-free medium, decreased RhoA protein expression, which was paralleled by significant decreases in GTP-bound RhoA, ROCK-1, and ROKalpha proteins, Rho-kinase activity, and MLC phosphorylation. The reduction of [Ca(2+)](cyt) also inhibited cell migration after wounding. Elevation of [Ca(2+)](cyt) induced by the Ca(2+) ionophore ionomycin increased GTP-bound RhoA, ROCK-1, and ROKalpha proteins, Rho-kinase activity, and MLC phosphorylation. Inhibition of RhoA function by a dominant negative mutant RhoA decreased the Rho-kinase activity and resulted in cytoskeletal reorganization. Inhibition of ROK/ROCK activity by the specific inhibitor Y-27632 not only decreased MLC phosphorylation but also suppressed cell migration. These results indicate that increase in GTP-bound RhoA by polyamines via [Ca(2+)](cyt) can interact with and activate Rho-kinase during intestinal epithelial restitution. Activation of Rho-kinase results in increased MLC phosphorylation, leading to the stimulation of myosin stress fiber formation and cell migration. 相似文献
10.
Polyamines: essential factors for growth and survival 总被引:7,自引:0,他引:7
Polyamines are low molecular weight, aliphatic polycations found in the cells of all living organisms. Due to their positive charges, polyamines bind to macromolecules such as DNA, RNA, and proteins. They are involved in diverse processes, including regulation of gene expression, translation, cell proliferation, modulation of cell signalling, and membrane stabilization. They also modulate the activities of certain sets of ion channels. Because of these multifaceted functions, the homeostasis of polyamines is crucial and is ensured through regulation of biosynthesis, catabolism, and transport. Through isolation of the genes involved in plant polyamine biosynthesis and loss-of-function experiments on the corresponding genes, their essentiality for growth is reconfirmed. Polyamines are also involved in stress responses and diseases in plants, indicating their importance for plant survival. This review summarizes the recent advances in polyamine research in the field of plant science compared with the knowledge obtained in microorganisms and animal systems. 相似文献
11.
12.
The polyamines and their derivatives are essential for life in eukaryotic and most prokaryotic cells, but their exact role in preserving cell function is not clear. These polyamines provide endogenous cations and thus participate in regulation of the intracellular pH; in addition, polyamine derivatives modulate cell growth and differentiation. The naturally occurring monoacetyl derivatives can induce increased activity of ornithine decarboxylase, the first enzyme in polyamine synthesis, and thus produce positive feedback to their production. The diacetyl derivatives of putrescine and of the synthetic analogue, 1,6-diaminohexane, induce differentiation and inhibit growth in many types of cells in vitro. In addition, they inhibit the proliferative and secretory response of normal B lymphocytes to B-cell mitogens and reduce production of antibodies in vitro. They also inhibit the proliferation of chronic lymphocytic leukemia cells (a B-lymphocyte leukemia). The parent polyamines are post-translational modifiers of proteins, and hypusine, a derivative of spermidine, is a covalently bound constituent of the eukaryotic protein synthetic initiation factor, eIF-4D. Although these various actions do not at present fall into a coherent pattern, they clearly indicate that polyamines and their derivatives play an important part in modulating cell proliferation and differentiation. 相似文献
13.
14.
Guo X Rao JN Liu L Zou T Keledjian KM Boneva D Marasa BS Wang JY 《American journal of physiology. Gastrointestinal and liver physiology》2005,288(6):G1159-G1169
Occludin is an integral membrane protein that forms the sealing element of tight junctions and is critical for epithelial barrier function. Polyamines are implicated in multiple signaling pathways driving different biological functions of intestinal epithelial cells (IEC). The present study determined whether polyamines are involved in expression of occludin and play a role in intestinal epithelial barrier function. Studies were conducted in stable Cdx2-transfected IEC-6 cells (IEC-Cdx2L1) associated with a highly differentiated phenotype. Polyamine depletion by alpha-difluoromethylornithine (DFMO) decreased levels of occludin protein but failed to affect expression of its mRNA. Other tight junction proteins, zonula occludens (ZO)-1, ZO-2, claudin-2, and claudin-3, were also decreased in polyamine-deficient cells. Decreased levels of tight junction proteins in DFMO-treated cells were associated with dysfunction of the epithelial barrier, which was overcome by exogenous polyamine spermidine. Decreased levels of occludin in polyamine-deficient cells was not due to the reduction of intracellular-free Ca(2+) concentration ([Ca(2+)](cyt)), because either increased or decreased [Ca(2+)](cyt) did not alter levels of occludin in the presence or absence of polyamines. The level of newly synthesized occludin protein was decreased by approximately 70% following polyamine depletion, whereas its protein half-life was reduced from approximately 120 min in control cells to approximately 75 min in polyamine-deficient cells. These findings indicate that polyamines are necessary for the synthesis and stability of occludin protein and that polyamine depletion disrupts the epithelial barrier function, at least partially, by decreasing occludin. 相似文献
15.
Zou T Rao JN Liu L Xiao L Cui YH Jiang Z Ouyang M Donahue JM Wang JY 《American journal of physiology. Cell physiology》2012,303(1):C102-C111
Polyamines regulate multiple signaling pathways and are implicated in many aspects of cellular functions, but the exact molecular processes governed by polyamines remain largely unknown. In response to environmental stress, repression of translation is associated with the assembly of stress granules (SGs) that contain a fraction of arrested mRNAs and are thought to function as mRNA storage. Here we show that polyamines modulate the assembly of SGs in normal intestinal epithelial cells (IECs) and that induced SGs following polyamine depletion are implicated in the protection of IECs against apoptosis. Increasing the levels of cellular polyamines by ectopic overexpression of the ornithine decarboxylase gene decreased cytoplasmic levels of SG-signature constituent proteins eukaryotic initiation factor 3b and T-cell intracellular antigen-1 (TIA-1)-related protein and repressed the assembly of SGs induced by exposure to arsenite-induced oxidative stress. In contrast, depletion of cellular polyamines by inhibiting ornithine decarboxylase with α-difluoromethylornithine increased cytoplasmic eukaryotic initiation factor 3b and TIA-1 related protein abundance and enhanced arsenite-induced SG assembly. Polyamine-deficient cells also exhibited an increase in resistance to tumor necrosis factor-α/cycloheximide-induced apoptosis, which was prevented by inhibiting SG formation with silencing SG resident proteins Sort1 and TIA-1. These results indicate that the elevation of cellular polyamines represses the assembly of SGs in normal IECs and that increased SGs in polyamine-deficient cells are crucial for increased resistance to apoptosis. 相似文献
16.
Wang LC 《Plant physiology》1972,50(1):152-156
Putrescine, spermidine, and spermine were three main polyamines isolated from soybeans and partially characterized. Occurrence of polyamines in soybeans was established by separating trichloroacetic acid extracts of soybeans by cationic exchange column chromatography, identification with thin layer chromatography, paper electrophoresis, mass spectral analysis, reactions with ninhydrin and Dragendorff reagents, and spectrophotometric characteristics. Soybeans contained a minimum of 29.0 micrograms of polyamines per gram of full-fat flour. The alcohol-soluble fraction of soybeans contained polyamines also. Resting seeds contained spermidine in higher concentration than either putrescine or spermine. Spermine appeared to be present in lowest concentration. Preliminary experiments suggested that some polyamines were possibly in bound forms. 相似文献
17.
18.
19.
20.
Summary. Due to the similarity in transport characteristics of polyamines and the y+ basic amino acid system, we hypothesized that both substrates could be moving through a common carrier site. Competitive
and cross inhibition experiments in intestinal epithelial cells revealed the possibility of a common transport site. N-ethylmalemide
(NEM) inhibited both lysine and putrescine transport, confirming that both were carried by a y+ transporter. Overexpressing the y+ transporter CAT-1 in a polyamine transport-deficient cell line, CHO-MG, did not reconstitute polyamine-transport. Thus, polyamines
are not traveling through CAT-1. To determine if lysine is carried by a polyamine transport site, an antizyme-overexpressing
cell line was used. Antizyme overexpression decreased polyamine uptake by 50%; in contrast, lysine transport was unaffected.
Therefore, lysine is not traveling through a polyamine transport site. It appears that polyamines and lysine are likely traveling
through a common unknown y+ transport site. 相似文献