首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the variability within the ribosomal DNA region spanning the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene (5.8S-ITS rDNA) was used to differentiate species in the genus Pichia. The 5.8S-ITS rDNA region was PCR-amplified and the PCR product digested with the enzymes CfoI, HinfI, and HaeIII. The variability in the size of the amplified product and in the restriction patterns enabled differentiation between species in the genus Pichia, and between Pichia species and yeast species from other genera in the Yeast-id database (). Moreover, the restriction fragment length polymorphism (RFLP) patterns of the 5.8S-ITS enabled misidentified strains to be detected and revealed genetic heterogeneity between strains within the Pichia membranifaciens and Pichia nakazawae species. Ultimately, the RFLP patterns of the 5.8S-ITS rDNA failed to differentiate between some Pichia and Candida species that could be distinguished on the basis of the sequence of the 5.8S-ITS rRNA region or the sequence of the D1/D2 domain of the 26S rDNA gene.  相似文献   

2.
The nucleotide sequence of the ITS1-5.8S ribosomal DNA spacer fragment was determined for 41 samples of the Malus species. The total length of compared sequences ranged from 389 to 392 bp. The nucleotide sequence of the 5.8S gene within the genus was highly conserved. The level of polymorphism of ITS1 region comprised 14%. Both species- and group-specific substitutions were identified. The analysis of M. orientalis and M. turkmenorum sequences revealed their full identity, which indicates the need to perform more research with a larger number of samples of both species from other collections to clarify the taxonomic status of the M. turkmenorum species. The previous findings on the synonymy of species M. baccata, M. mandshurica, M. pallasiana, and M. sachalinensis were also confirmed.  相似文献   

3.
The PCR amplification and subsequent restriction analysis of the ribosomal region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene is applied to the identification of yeasts belonging to the genus Candida. This methodology has previously been used for the identification of some species of this genus, but in the present work this application has been applied to the identification and characterisation of a greater number of species of the genus Candida, with a special survey of species of clinical and biotechnological interest. Among the species of the genus Candida, the high variability observed, both in the length of the amplified region (ranging between 390 and 900 bp) and in their restriction patterns, allows the unequivocal identification to the species level, with the exception of the group of species that comprises C. membranifaciens, C. conglobata, C. atlantica, C. atmosphaerica, and C. oleophila, that required the sequencing of the D1/D2 domain of the 26S rRNA gene or the 5.8S-ITS region for their proper differentiation. The 5.8S-ITS restriction analysis also failed in the differentiation of species within the pairs C.aaseri/C.butyri,C.fructus/C.musae,C.santamariae var. santamariae / C. beechii and C. zeylanoides / C. krissii. In this case, the high sequence similarities obtained for their 26S D1/D2 domain and the 5.8S-ITS region indicate that each pair of species should be considered as a single species. The main purpose of this work is to generate a database for a high number of yeast species, of both biotechnological and clinical interest, and to facilitate their easy, fast, and reliable identification. The present work improves the database available online at the IATA web page (http://motor.edinfo.es/iata/) with the patterns of 75 species belonging to the genus Candida.  相似文献   

4.
5.
To clarify the phylogenetic relationships and species status of Pneumocystis, the 5.8S rRNA gene and the internal transcribed spacers (ITS, 1 and 2) of Pneumocystis rRNA derived from rat, gerbil and human were amplified, cloned and sequenced. The genetic distance matrix of six Pneumocystis species compared with other fungi like Taphrina and Saccharomyces indicated that the Pneumocystis genus contained multiple species including Pneumocystis from gerbil. The phylogenetic tree also showed that Pneumocystis from human and monkey formed one group and four rodent Pneumocystis formed another group. Among the four members, Pneumocystis wakefieldiae was most closely related to Pneumocystis murina and Pneumocystis carinii, and was least related to gerbil Pneumocystis.  相似文献   

6.
Summary The internal transcribed spacer (ITS) 1 and 2, the 5.8S rRNA gene, and adjacent 18S rRNA and 25S rRNA coding regions of two Cucurbitaceae (Cucurbita pepo, zucchini, ITS 1: 187 bp, and ITS 2: 252 bp in length, andCucumis sativus, cucumber, ITS 1: 229 bp, and ITS 2: 245 bp in length) have been sequenced. The evolutionary pattern shown by the ITSs of these plants is different from that found in vertebrates. Deletions, insertions, and base substitutions have occurred in both spacers; however, it is obvious that some selection pressure is responsible for the preservation of stem-loop structures. The dissimilarity of the 5 region of ITS 2 found in higher plants has consequences for proposed models on U3 snRNA-ITS 2 interaction in higher eukaryotes.The two investigated Cucurbitaceae species show a G+C content of ITS 1 that nearly equals that of ITS 2. An analysis of the ITS sequences reveals that in 19 out of 20 organisms published, the G+C content of ITS 1 nearly equals that of ITS 2, although it ranges from 20% to 90% in different organisms (GC balance). Moreover, the balanced G+C content of the ITSs in a given species seems to be similar to that of so-called expansion segments (ESs) in the 25/28S rRNA coding region. Thus, ITSs show a phenomenon called molecular coevolution with respect to each other and to the ESs. In the ITSs of Cucurbitaceae the balanced G+C composition is at least partly achieved by C to T transitions, via deamination of 5-methylcytosine. Other mutational events must be taken into account. The appearance of this phenomenon is discussed in terms of functional constraints linked to the structures of these spacers.  相似文献   

7.
8.
Polymorphism in enzymatically amplified ribosomal DNA (rDNA) were examined in 18 strains ofSaccharomyces. Restriction patterns generated from the region spanning the internal transcribed spacers (ITS) and the 5.8S rDNA produced two clusters corresponding toS. bayanus andS. cerevisiae. The type culture ofS. carlsbergensis (ATCC 76529), which could not be separated from theS. cerevisiae group by small subunit (SSU) rDNA patterns, showed aScrfI profile that was distinct from all the other strains. The type culture ofs. intermedius var.turicensis (ATCC 76519) is assigned toS. bayanus on the basis of the combined results of SSU and ITS restriction analyses.S. kluyveri occurred at a separate branch of the distance tree and is unrelated to any of the strains. Results were in general agreement with reported DNA homologies and are discussed in relation to other molecular and genetic data.  相似文献   

9.
The PCR amplification and subsequent restriction analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene was applied to the identification of yeasts belonging to the genus Saccharomyces. This methodology has previously been used for the identification of some species of this genus, but in the present work, this application was extended to the identification of new accepted Saccharomyces species (S. kunashirensis, S. martiniae, S. rosinii, S. spencerorum, and S. transvaalensis), as well as to the differentiation of an interesting group of Saccharomyces cerevisiae strains, known as flor yeasts, which are responsible for ageing sherry wine. Among the species of the Saccharomyces sensu lato complex, the high diversity observed, either in the length of the amplified region (ranged between 700 and 875 bp) or in their restriction patterns allows the unequivocal identification of these species. With respect to the four sibling species of the Saccharomyces sensu stricto complex, only two of them, S. bayanus and S. pastorianus, cannot be differentiated according to their restriction patterns, which is in accordance with the hybrid origin (S. bayanus × S. cerevisiae) of S. pastorianus. The flor S. cerevisiae strains exhibited restriction patterns different from those typical of the species S. cerevisiae. These differences can easily be used to differentiate this interesting group of strains. We demonstrate that the specific patterns exhibited by flor yeasts are due to the presence of a 24-bp deletion located in the ITS1 region and that this could have originated as a consequence of a slipped-strand mispairing during replication or be due to an unequal crossing-over. A subsequent restriction analysis of this region from more than 150 flor strains indicated that this deletion is fixed in flor yeast populations.  相似文献   

10.
The internal transcribed spacer region (ITS1 and ITS2) of the 18S-25S nuclear ribosomal DNA sequence and the intervening 5.8S region were sequenced from three individuals in each of eight taxa of the Mimulus guttatus species complex. Three discrete variants, or "types," of ITS sequences were found, among which 30%-40% of sites differed, compared with 1%-2% within types. Dot plots indicate that these types were not related by conspicuous rearrangements or inversions. More than one ITS type was often found in the same taxon, and two of three ITS types span species boundaries, indicating their presence prior to speciation. These ITS sequences showed essentially no positional homology with the nearest sequenced relative, tomato. In contrast, the 5.8S region was relatively unvaried, with 8 of 162 sites varied in the sample among all eight taxa. The phylogeny inferred by the most common ITS sequence type, rooted by the two other ITS types, agreed with isozymes in showing the distinctness of M. nudatus, M. laciniatus, and M. tilingii from the other five taxa.   相似文献   

11.
Sequences of the internal transcribed spacer (ITS) region including the 5.8S rRNA gene delineated seven genotypes within the three varieties of Cryptococcus neoformans via specific combinations of eight nucleotide differences located at positions 10, 11, 15, 19, 108 (ITS1), 221 (5.8S), 298 and 346 (ITS2). The ITS types correlated to polymerase chain reaction fingerprint/random amplification of polymorphic DNA (RAPD) molecular types: with ITS type 1 (ATACTAGC)=C. neoformans var. grubii, molecular types VNI+VNII and the serotype A allele of the AD hybrid, VNIIIA; ITS type 2 (ATATAGGC)=the serotype D allele of the AD hybrid, VNIIIB, and C. neoformans var. neoformans, VNIV; and ITS type 3 (GCGCTGGC) and ITS type 7 (ACGCTGGC)=VGI=RAPD type III, ITS type 4 (ACACTGAC)=VGII=RAPD type II, ITS type 5: (ACACTGGG)=VGIII=RAPD type I, ITS type 6 (ACACTGGC)=VGIV=RAPD type IV, all corresponding to C. neoformans var. gattii. Cloned sequences from serotype AD revealed that the hybrid serotype is diploid at the ITS1-5.8S-ITS2 locus carrying the ITS type 1 (ATACTAGC) and the ITS type 2 (ATATAGGC) alleles. ITS sequencing is a useful technique for genotyping the three C. neoformans varieties and for subtyping within C. neoformans var. gattii.  相似文献   

12.
Summary Nucleotide sequences of the first and second internal transcribed spacers (ITS1 and ITS2, respectively) of ribosomal DNA (rDNA) from two dicot plants, carrot and broad bean, were determined. These sequences were compared with those of rice, a monocot plant, and other eukaryotic organisms. Both types of ITS region in some species of Angiospermae were the shortest among all eukaryotes so far examined and showed a wide range of variation in their G+C content, in contrast to a general trend toward very high G+C content in animals. Phylogenetic relationships of plants with animals and lower eukaryotes were considered using the nucleotide sequences of carrot and broad bean 5.8S rDNA that were determined in the present study, together with that of wheat 5.8S rRNA, which has been reported previously.  相似文献   

13.
14.
Internal transcribed spacers (ITS) and the 5.8S ribosomal gene of 21 Naegleria fowleri strains and eight other species including Naegleria gruberi were sequenced. The results showed that this region can help differentiate between and within species. The phylogeny of Naegleria spp. deduced from the ITS and the 5.8S gene produced four major lineages, fowleri-lovaniensis, galeacystis-italica-clarki-gruberi-australiensis, andersoni-jamiesoni, and pussardi, that fit perfectly with those inferred from the 18S rRNA gene analysis. The N. gruberi isolate, NG260, was closely related to Naegleria pussardi. The other N. gruberi isolates branched together with Naegleria australiensis in another lineage. The ITS and 5.8S results for N. fowleri were congruent with those previously deduced by RAPD analysis. The phylogenetic analysis inferred from ITS and RAPD data revealed two major groups. The French Cattenom and Chooz and South Pacific strains constituted the first group. The second group encompassed the strains corresponding to the Euro-American and Widespread RAPD variants and shared the same substitution in the 5.8S gene. In addition, it was possible to define species specific primers in ITS regions to rapidly identify N. fowleri.  相似文献   

15.
The scuticociliate Miamiensis avidus is a histophagous parasite that causes high mortality in cultured marine fishes, with clinical signs of severe ulcers and hemorrhages in the skeletal muscle. The internal transcribed spacer (ITS) region, which is widely used in taxonomy and molecular phylogeny because of a high degree of variation, was compared for 21 cloned strains of M. avidus (Ciliophora, Scuticociliatia). These strains were isolated from olive flounder Paralichthys olivaceus, ridged-eye flounder Pleuronichthys cornutus and spotted knifejaw Oplegnathus fasciatus in Korea and Japan. The ITS1 (140 bp), ITS2 (236 bp) and 5.8S (119 bp) regions from 21 strains were identical, indicating that these regions are highly conserved in M. avidus. Phylogenic analysis of ITS2 shows that the ciliate should be included in the Philasterida with a close relationship to Pseudocohnilembus hargisi. This study exhibits the first detailed analysis of the ITS1, 5.8 S and ITS2 rRNA regions of M. avidus.  相似文献   

16.
17.
The sequences of ITS regions in 30 species and two groups of the genusPythium were resolved. In the phylogenetic trees, the species were generally divided into two clusters, referred to here as the F and S groups. The species in the two groups correspond in terms of their sporangial morphology, with the F group being filamentous/lobulate and the S group being spherical. Genetic divergence within the F group was lower than that within the S group. Other morphological characteristics such as oogonial structure and sexual nature appeared to be unrelated to the groupings in these trees. An alignment analysis revealed common sequences to all the species and arrangements specific to each F or S group. It was found that the ITS region was a good target in designing species-specific primers for the identification and detection ofPythium species. In the tree based on 5.8S rDNA sequences, oomycetes are distantly related to other fungi but separated from algae in Chromista.  相似文献   

18.
The anamorph determination of Cordyceps sinensis remains problematic due to the lack of clear links between the sexual and conidial forms of the fungus. In this study, we applied molecular approaches to analyze the genetic variation of Cordyceps sinensis and its allies to identify the anamorph-teleomorph connection. The sequences of the internal transcribed spacers (ITS1 and ITS2) and 5.8S ribosomal RNA gene of Cordyceps sinensis (teleomorph) collected from Qingzang plateau (altitude over 4000m), Tibet and several related asexual conidial forms were determined. The sequence comparison showed that Cordyceps sinensis was most closely related to Hirsutella sinensis, and was clearly divergent from Paecilomyces sinensis, Stachybotrys sp. or Tolypocladium sp.; distance values, estimated according to Kimura two-parameter models between Cordyceps sinensis and Hirsutella sinensis, were extremely low (<0.02), whereas distance values between Cordyceps sinensis and Paecilomyces sinensis, Stachybotrys sp. and Tolypocladium sp. were 0.34, 0.21 and 0.25, respectively. Taken together, Hirsutella sinensis and Cordyceps sinensis are the different stages of the life cycle stages of the same organism. Hirsutella sinensis is therefore the anamorph of Cordyceps sinensis, rather than Paecilomyces sinensis or other species. The possible reasons as to why different taxa can be obtained when culturing Cordyceps sinensis are also discussed.  相似文献   

19.
The internal transcribed spacers (ITSs) of nuclear ribosomal DNA have been sequenced for 20 species of Gentiana. By incorporating previously released sequence data of eight species, phylogenelic analyses using Fitch parsimony and character-state weighted parsimony were carried out. The length of ITS 1 in the taxa surveyed ranged from 223 to 238 bp and ITS2 from 216 to 234 bp. Sequence divergence between pairs of species ranged from 5.0% to 48.9% in ITS1, from 1.1% to 45.3% in ITS2, and from 3.2% to 46.1% in combined data of ITS1 and ITS2. The ITS phylogeny was generally congruent with morphological classifications except that G. asclepiadea was revealed to be closely related to section Gentiana instead of section Pneumonanthe and section Stenogyne was shown to be a paraphyletic group of the genus Gentiana that would be better excluded from the genus. A divergence among the three European endemic sections and the remaining sections of the genus other than section Stenogyne was revealed. Thus the European species of the genus together do not form a monophyletic group. A close relationship between the sections Chondrophyllae s. l. (including section Dolichocarpa), Cruciata and Pneumonanthe was suggested. The section Frigidae s. l. (including sections Monopodiae, Isomeria, Microsperma, and Phyllocalyx) contained two well-supported clades: section Frigidae s. str. and all others together. The monophyly of the typically dysploid group section Chondrophyllae s. l. was confirmed. Optimization of chromosome numbers on the ITS phylogeny suggested that 2/1 = 26 is a plesiomorphic state for the clade comprising sections Frigidae s. l., Cruciata, Pneumonanthe, and Chondrophyllae s. l., and probably 2n = 20 is a plesiomorphic state for the dysploid group, section Chondrophyllae s. l.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号