首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To the discussion on secondary succession in tropical forests, we bring data on three under‐addressed issues: understory as well as overstory changes, continuous as opposed to phase changes, and integration of forest succession with indigenous fallow management and plant uses. Changes in vegetation structure and species composition were analyzed in secondary forests following swidden agriculture in a semideciduous forest of Bolivian lowlands. Twenty‐eight fallows, stratified by four successional stages (early = 1–5 yr, intermediate = 6–10 yr, advanced = 12–20 yr, and older = 22–36 yr), and ten stands of mature forests were sampled. The overstory (plants ≥5 cm diameter at breast height [DBH]) was sampled using a 20 × 50 m plot and the understory (plants <5 cm DBH) in three nested 2 × 5 m subplots. Semistructured interviews provided information on fallow management. Canopy height, basal area, and liana density of the overstory increased with secondary forest age. The early stage had the lowest species density and diversity in the overstory, but the highest diversity in the understory. Species composition and abundance differentiated mature forests and early successional stage from other successional stages; however, species showed individualistic responses across the temporal gradient. A total of 123 of 280 species were useful with edible, medicinal, and construction plants being the most abundant for both over‐ and understories. Most of Los Gwarayo preferred mature forests for making new swidden, while fallows were valuable for crops, useful species, and regenerating timber species.  相似文献   

2.
Despite the recent rapid growth of tropical dry forest succession ecology, most studies on this topic have focused on plant community attribute recovery, whereas animal community successional dynamics has been largely overlooked, and the few existing studies have used taxonomic approaches. Here, we analyze the successional changes in the bee community in a Mexican tropical dry forest, by integrating taxonomic (species, genus, and family diversity) and functional (sociability, nesting strategy, and body size) information for bees. Over one year, in a successional chronosequence (2–67 years after abandonment) we collected 469 individual bees, representing five families, 36 genera, and 69 species. Linear modeling showed decreases in taxonomic diversity with succession, more strongly so for species. Bee species turnover along succession ranged from moderate to high, decreasing slightly at intermediate stages. An RLQ analysis (ordination method that allows relating environmental variables with functional attributes) revealed clear relations between bee functional traits and the plant community. RLQ axis 1 was positively related to vegetation structural and diversity variables, and to eusociality, while solitary, parasociality, and ground nesting was negatively associated with it. Early successional fallows attract mostly solitary and parasocial bees; older fallows tend to attract eusocial bees with aerial nesting. The continuous taxonomic turnover observed by us and the functional analysis suggest that the disappearance of old fallows from agricultural landscapes would likely result in significant reductions and even local extinctions of particular bee guilds. Considering the low viability of preserving large mature tropical dry forest tracts, the conservation of older successional stands emerges as a crucial component of landscape management.Abstract in Spanish is available with online material.  相似文献   

3.
This study describes differences in species richness, diversity and composition of Carabidae in gradients from recently abandoned, non-grazed fields over stages of overgrowth into forest on formerly agricultural land in a large, sandy outwash plain, south Sweden. Totally 80 pitfall traps, (4 succession stages, each represented by 4 sites; 5 traps per site) installed on 29 March 2006 were emptied continuously until 1 November. Succession stages were: 7–10 y old fallows after cereals with thin and low vegetation of small perennial and annual herbs (Ia), 7–10 y old fallows abandoned as lay with a rich plant cover of broad-leaved grasses and herbs (Ib), 20–25 y old fallows with a shrub layer of colonising pine and narrow-leaved grasses (II), and ca 80 y old pine stands planted on originally cultivated ground with a rich shrub layer but lacking herbaceous plants (III). A total of 14,068 individuals of 71 carabid species were captured. Species richness was highest in stage Ib, whereas Shannon species diversity was highest in Ia. Both species richness and diversity were lowest in III, sites II being intermediate. Total number of individuals captured site−1 was low in III, being highest in Ib. Mean body weight and total dry mass of species, however, increased with succession stage. Amara and Harpalus species were most common in Ia but important also in Ib, with large differences in species composition between the two stages. These genera were almost lacking in III, where Carabus spp. and Pterostichus niger dominated. The share of Calathus was highest in II, where C. fuscipes played a dominating role. P. versicolor dominated in Ib, whereas P. lepidus was quite common in all non-forest stages. Duration and intensity of capturing activity necessary to find most species of the sites are discussed. Many scarce or rare species in south Scandinavia were captured, mainly in Ib. Abandoned non-grazed fields are important hibernating and breeding refuges for many carabids. Using extensive and non-expensive management this ought to be considered as an additional alternative in environment conservation policy, which now usually recommends economically subsidised grazing on set-aside land.  相似文献   

4.
Transect counts of butterflies were conducted in the northern part of Ibaraki, central Japan, from 1997 to 2001 at 11 census sites, composed of successive stages of deciduous forest development: grassland (one site, early abandoned stage); cutover land (one site, 1–5 years after clear‐cutting); secondary forests (very young (two sites, 6–9 years), middle (two sites, 16–22 years) and old (two sites, 47–51 years)) and old‐growth natural forests (three sites, ≥124 years old). A total of 86 species and 8858 individual butterflies were recorded by 29 sets (406 times) of transect counts. The species richness (number of species), abundance (number of individuals) and diversity indices (Shannon–Wiener H′ and Simpson's 1–λ) of butterflies were high in the early stages (grassland, cutover land and very young secondary forests) of secondary succession. Typical natural forest species increased with the progress of succession, and the old secondary forests and old‐growth natural forests had similar species composition. In contrast, most of the typical natural grassland species were recorded only in the grassland site. In the cutover land site, the number of individuals of grassland species considerably decreased from the first to the second year; furthermore, only one typical natural grassland species was recorded. Thus, the suitable stage for grassland butterfly species lasts for only 1–2 years after clear‐cutting. Old secondary forests (approximately>50 years old) would be able to give refuge to the forest butterfly species, including typical natural forest species. Based on the results, a practical, forestry‐based plan to conserve butterfly diversity was proposed.  相似文献   

5.
放牧过程通过牲畜的啃食、践踏作用干扰草场环境,使草地群落的物种组成发生变化,植物种群的优势地位发生更替。结果表明,随放牧干扰强度加重,从盐湿化草甸到典型草原,群落植物种丰富度呈下降趋势。β多样性测度结果显示,盐湿化草甸和羊草杂类草草甸群落物种变化的中度干扰出现在轻牧→中牧阶段,并在整个放牧干扰进程中,表现较低的稳定性;草甸草原和典型草原群落出现在中牧→重牧阶段;而荒漠草原物种变化表现出高度的稳定性,从轻牧到过牧物种替代仅1~3种。各群落放牧干扰植物多样性的稳定性次序是:荒漠草原>典型草原≥草甸草原>盐湿化草甸.  相似文献   

6.
Slash-and-burn agriculture is an important driver of deforestation and ecosystem degradation, with large effects on biodiversity and carbon sequestration. This study was conducted in a forest in Madagascar, which consists of fragments of slash-and-burn patches, within a matrix of secondary and primary forest. By recording species richness, abundance, and composition of trees, shrubs, and herbs in fallows of various age and slash-and-burn history, and in the secondary and primary forest, we show how slash-and-burn intensity (number of cycles, duration of abandonment), years since last abandonment, and environmental factors (distance to primary forest and topography) affect the natural succession and recovery of the forest ecosystem. We used ordination analyses to examine how the species composition varied between the different successions stages, and to examine tree recruitment. Our results show shrub dominance the first years after abandonment. Thereafter, a subsequent increase in species richness and abundance of tree seedlings and saplings suggests a succession towards the diversity and composition of the secondary and primary forest, although a big gap between the oldest fallows and the secondary forest shows that this will take much more than 30 years. A high number and frequency of slash-and-burn cycles decreased tree seedling and sapling richness and abundance, suggesting that reducing slash-and-burn intensity will increase the speed of tree recruitment and fallow recovery. Trees can be planted into fallows to speed up vegetation and soil recovery, such that fallows can be usable within needed time and thus the extension of cultivated areas reduced. We recommend further testing of six potential species for restoration based on their early colonization of the fallows and their survival through vegetation succession.  相似文献   

7.
The ant fauna of the Chuya depression numbers 17 species, of which four species inhabit desert steppes, eight species occur in the near-water saline steppes, and eleven, in valley meadows and forests on mountain slopes. Of the 17 registered species, 14 are common in adjacent Mongolia and Tuva, which testifies to a high faunal commonness of these territories. The population pattern of ants is determined by two species with very low abundance (up to 0.01 nest/100 m2), Proformica mongolica Ruzsky and Cataglyphis aenescens Nylander, and in shallow hollows Formica subpilosa Ruzsky is added to them. Two zones with a higher density of population have been revealed in the vertical transzonal direction, in alpine desert steppes on the southern slopes (Yustyd River basin) and in the saline biotopes of the Chuya River floodplain.  相似文献   

8.
Due to their role in seed dispersal, changes in the community of phyllostomid bats have direct consequences on ecological succession. The objective of this work was to document changes in the structure of bat assemblages among secondary successional stages of tropical rain forest in Chiapas, Mexico. Bats were mist-netted at ground level during 18 months in 10 sites belonging to 3 successional stages: four sites represented early succession (2–8 years of abandonment), four intermediate succession (10–20 years of abandonment), and two late succession (mature old-growth forest).We captured 1,179 phyllostomids comprising 29 species. Phyllostomid species richness was 17 (58% of all species) in the early stage, 18 (62%) in the intermediate stage and 24 (83%) in the late stage. The late successional mature forest possessed nine species that were exclusively found there, whereas early and intermediate successional stages contained only one exclusive species. Sturnira lilium, Artibeus lituratus, Carollia perpicillata, Artibeus jamaicensis and Glossophaga soricina represented 88% of all captured phyllostomid bats. Frugivores made up more than 90% of the species captured in early and intermediate successional stages and 84% in late successional forest. The Bray–Curtis index of dissimilarity showed a replacement of species through successional stages with the largest dissimilarity between early and late stages, followed by intermediate and late, and the lowest dissimilarity between early and intermediate stages. The number of gleaning insectivore species increased during succession. The carnivorous guild was exclusively found in the late stage (three species). We conclude that the late successional mature forest was the main reservoir for the gleaning insectivore and carnivore guilds; however, early and intermediate successional stages possessed a great diversity of species including many frugivores.  相似文献   

9.
The phytogeography of the genus Allium in Siberia and Mongolia is described, based on the numerical classification of a matrix of 56 species and 769 Operational Geographic Uniis (OGUs). Two main diversity centers can be detected, the Altai-Tuva region and southeastern Siberia, which can be further subdivided into 4 subcenters: Altai Mts., Tuva Mts., southern Baikal and Dahuria. The first three subcenters. located in southern Siberia, are rich in endemic species, which are mostly bound to semi-arid environments such as montane steppes and alpine vegetation. These old, isolated mountain ranges constitute the main refugial centers for the Allium flora of Siberia and Mongolia. The Tuva subcenter, rich in endemics and poor in polyploid species, seems to be the most conservative area; the south Baikal region, much richer in polyploid species, appears as an important center af speciation.  相似文献   

10.
Old field succession in Oklahoma has been reported to involve four stages of development: pioncer weeds, annual grass, bunch grass, and mature prairie. This sequence has been the basis for a number of analyses of grassland structure and function, but has never been documented on a single site. We used multivariate techniques to study succession on three permanent plots with different initial plowing treatments in a central Oklahoma grassland. Only two of the four hypothesized stages could be identified: pioneer weeds and mature prairie. The intervening vegetation development was heterogeneous and unpredictable. Convergence was evident in only a general manner in that all plots are currently being invaded by shrubs and some tree species. Thus, succession on these plots has advanced beyond prairie to shrub-grassland and we predict that upland forest trees may eventually dominate the site. Succession from pioneer weeds beyond prairie to shrub-grassland has been very rapid. Fire suppression may have contributed to these rapid vegetation changes. Finally, no trends in diversity, evenness, or total number of species were evident during succession.  相似文献   

11.
Succession is one of the most studied processes in ecology and succession theory provides strong predictability. However, few attempts have been made to influence the course of succession thereby testing the hypothesis that passing through one stage is essential before entering the next one. At each stage of succession ecosystem processes may be affected by the diversity of species present, but there is little empirical evidence showing that plant species diversity may affect succession. On ex-arable land, a major constraint of vegetation succession is the dominance of perennial early-successional (arable weed) species. Our aim was to change the initial vegetation succession by the direct sowing of later-successional plant species. The hypothesis was tested that a diverse plant species mixture would be more successful in weed suppression than species-poor mixtures. In order to provide a robust test including a wide range of environmental conditions and plant species, experiments were carried out at five sites across Europe. At each site, an identical experiment was set up, albeit that the plant species composition of the sown mixtures differed from site to site. Results of the 2-year study showed that diverse plant species mixtures were more effective at reducing the number of natural colonisers (mainly weeds from the seed bank) than the average low-diversity treatment. However, the effect of the low-diversity treatment depended on the composition of the species mixture. Thus, the effect of enhanced species diversity strongly depended on the species composition of the low-diversity treatments used for comparison. The effects of high-diversity plant species mixtures on weed suppression differed between sites. Low-productivity sites gave the weakest response to the diversity treatments. These differences among sites did not change the general pattern. The present results have implications for understanding biological invasions. It has been hypothesised that alien species are more likely to invade species-poor communities than communities with high diversity. However, our results show that the identity of the local species matters. This may explain, at least partly, controversial results of studies on the relation between local diversity and the probability of being invaded by aliens. Received: 13 July 1999 / Accepted: 4 February 2000  相似文献   

12.
 本文研究了河北省柏各庄垦区主要的水稻—杂草群落,并对优势杂草进行了生物、生态学特性的观察。稻田杂草的生活型以一年生与多年生的为主。它们虽然生长旺盛、繁殖力强,但每种杂草在其生活周期中都有一个生长弱期,即当种子或地下越冬器官的营养物质消耗殆尽而强大的根系尚未形成之前的阶段,这一阶段是杂草的防除适期。稻田中的杂草常与水稻形成具有一定种类组成、结构和外貌的水稻—杂草群落。在不同的生态环境条件下形成不同的群落。但是有许多水稻—杂草群落生态幅度大,可以分布到全国各地。水稻—杂草群落有明显的季节变化和群落演替规律,这不仅决定于杂草本身的生物学特性,而且决定于环境条件及人为影响。了解与掌握群落演替动态,可以及时采取有效措施,控制与防止草害的发生。  相似文献   

13.
【目的】近年来,美国高粱开始大量进入我国,其携带的杂草种子状况尚未有相关研究。通过对进境美国高粱携带的杂草种子现状进行分析,可为出入境检验检疫机构的检疫监管和后续监测提供依据。【方法】通过对2014—2016年进境美国高粱截获的杂草种子的研究,了解其携带的杂草种子状况。【结果】黄埔检验检疫局和南沙检验检疫局从进境的美国高粱中截获的杂草种子种类共涉及19个科106种。主要包括禾本科27种、菊科14种、大戟科3种、茄科2种、苋科15种、豆科10种、蓼科7种、锦葵科4种、旋花科7种、十字花科4种、藜科4种等,其中检疫性杂草共涉及5科25种,检出率高。【结论】美国高粱携带的杂草种子数量大,种类丰富,检疫性杂草含量大,应予以高度重视。  相似文献   

14.
本文采用由植被的空间序列推断时间上演替系列的方法对甘南亚高山草甸弃耕地上的植物群落组成进行了分析。结果表明:(1)弃耕初期,莎草,禾草类在群落中的地位从开始时的71%急剧地下降到弃耕十二年时的6%;以后随着密丛型的莎草,禾草的侵入,它们地位又开始上升而恢复到30%一40%:杂类草的地位在开始时上升较快,而到了后期又有所下降;毒害草在群落中的地位基本稳定,保持在10%左右。 (2)群落的种丰富度、均匀度、Simpson多样性指数随弃耕年限增加而增大,而群落优势度随弃耕年限而减小。 (3)优势度—多样性曲线在弃耕初期为几何分布型,中后期演变为对数正态分布型,而对放牧顶极群落又近似于MacArthur分布型。  相似文献   

15.
 A secondary succession of vegetation on clearcut sites was studied in Western Sichuan. The coverage and biomass of trees, shrubs and herbs at different stages of succession have been surveyed. The result showed that the coverage and biomass of trees and shrubs have changed greatly in the succession. After the forest was cut, raspberry’s (Rubus daeus) coverage was the greatest during the first 0–15 years, Red birch’s coverage was the greatest during 16–29 years, while the total coverage of other shrubs was greater than those of raspberry and red birch during 10–20 years.The following empirical formulas with good fitness have been used:Ctree=0.803+2.347t1/2 (r=0.88 p<0.01) Cshrub=l0.481 l0.392T+0.373T2 (r=0.87 p<0.01)Cherb=0.489+87.001/T (r=0.93 p<0.01) C: biomass, kilogram/ha T: time period, year According to the curves, the succession of vegetation can be divided into four stages: herb stage. 0—3 years; raspberry stage: 4—10 year; shrub and small broad-leaved forest stage: 11—20 years, and small broad–leaved forest stage: 21—29 years.  相似文献   

16.
Plant Functional Diversity and Species Diversity in the Mongolian Steppe   总被引:1,自引:0,他引:1  

Background

The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated.

Methodology/Principal Findings

In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity.

Conclusions/Significance

These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought.  相似文献   

17.
This study evaluated the effects of tree species and sites on soil carbohydrates, litterfall, and litter chemistry in 2-, 4- and 10-year-old improved fallows at three sites in eastern Zambia. Between April 2002 and August 2003, litter was collected in 2-year-old tree fallows at Kalichero, Kalunga and Msekera for chemical analyses. Soil samples collected at 0–30 cm from all experiments were analysed for total soil organic carbon (SOC), but only those from 4- and 10-year-old fallows were analysed for carbohydrates. Soil arabinose- and mannose-C stocks, and carbohydrate-C percentages of SOC (7.7–20.6 %) significantly (P < 0.05) differed across tree species in 10-year-old coppicing fallows at Msekera. Converting M + F to improved fallows resulted in a decline in monosaccharide-C, carbohydrate-C stocks and carbohydrate-C percentage of SOC. There were significant (P < 0.05) variations in litterfall (0.7–2.3 t ha?1 year?1) and litter C contents (0.3–1.1 t ha?1 year?1) across 2-year-old coppicing tree fallows at Msekera. Litter production and C contents were significantly greater on sandy soils at Kalunga than on fine-textured soils at Msekera. Litter chemical contents (C, N, AUR and polyphenols) and ratios (C:N, P:N, AUR:N, and (AUR + P):N) for litter in fallows differed significantly (P < 0.05) across species and sites. In this study, the role of litter in carbon cycling in improved fallows depended on tree species and site conditions.  相似文献   

18.
Water availability directly influences interactions and competition between weeds and crops. This article is based on the idea that relative water content (RWC) indicates the water uptake within plants and that it is possible to explain the water relationships between plants that are growing together. A field experiment carried out for 3 years (2013–2014, 2014–2015 and 2015–2016) compared the short-term effects of years and tillage systems on wheat grain yield, weed density, wheat-RWC, weed-RWC and soil water content (SWC), at tillering and flowering stages in a winter wheat monoculture system. The three tillage treatments were conventional tillage (CT), minimum tillage (MT) and no-tillage (NT). Wheat grain yield was low all years of study, because of low interannual rainfall, and we did not observe differences between tillage systems. Weed density was also affected by year and not by tillage systems. Lowest winter rainfall (73.4 mm from Nov to Feb) in the last year of the study (2015–2016), decreased the weed density in all tillage systems. Despite the rainfall variability over the 3 years of study, the NT system presented higher weed density (73 plants/m2) than MT and CT systems (39.83 and 46.33 plants/m2). We also observed a higher number of weed species for the NT system, facilitated by a high soil water storage in this system. The wheat-RWC, at tillering stage, varied with years and tillage systems; we found that high winter rainfall (2013–2014) led to higher values in CT (64.5%) compared with MT (52.9%) and NT plots (52.9%). Weed-RWC values did not vary and SWC was greater in NT than in CT and MT. At flowering stage, the year (2015–2016) with highest spring rainfall favoured higher wheat-RWC in NT (56.9%) compared with CT (48.3%). However, the lowest spring rainfall coincided with the lowest weed-RWC, (18% in NT plots) and SWC was always higher in NT soils. The results showed that climatic conditions affected the water competence dynamics between weeds and wheat in different ways. Seemingly, weeds can tolerate a lack of water availability until crop tillering stage independently of tillage system; however, the competition for water was not a problem as crops overcame the high weed density by flowering stage.  相似文献   

19.
Abstract. Development of semi‐natural vegetation has recently been a primary concern of restoration efforts. A primary management question is whether active intervention is required or spontaneous secondary succession could suffice. We studied 54 old‐fields in central Hungary, which differed in time since abandonment but which had similar environmental conditions and management histories. The sites were grouped into four age groups according to the time elapsed since cultivation abandonment: 1–5, 6–10, 11–23 and 24–33 yr. In each old‐field we recorded the species and estimated their abundances. We grouped species in two ways: according to life form (annuals, biennials, perennials, woody plants) and according to coenological behaviour (weeds, sand and steppe generalists, specialists). We analysed the changes in species number and abundance in these categories as a function of site age. Contrary to other successional studies, the total number of species did not change significantly among the four age groups. A significant change was detected between the first two age groups as to life‐form composition. Species number and abundance of annuals decreased, while the perennials and woody plants increased. As to coenological behaviour, species number changed only in the first two age groups, while abundance changed in the first three. Weeds quickly disappeared and specialists established and spread, while the species number and abundance of generalists did not change significantly. We concluded that the basic shifts in species composition are almost completed within 10 yr. Most of the late successional species colonized and weeds disappeared. We conclude that there was no need for active intervention in this system: the spontaneous secondary succession leads to semi‐natural vegetation.  相似文献   

20.
Although soil pH has been shown to be an important factor driving microbial communities, relatively little is known about the other potentially important factors that shape soil-borne microbial community structure. This study examined plant and microbial communities across a series of neutral pH fields (pH=7.0-7.5) representing a chronosequence of secondary succession after former arable fields were taken out of production. These fields ranged from 17 to >66 years since the time of abandonment, and an adjacent arable field was included as a reference. Hierarchical clustering analysis, nonmetric multidimensional scaling and analysis of similarity of 52 different plant species showed that the plant community composition was significantly different in the different chronosequences, and that plant species richness and diversity increased with time since abandonment. The microbial community structure, as analyzed by phylogenetic microarrays (PhyloChips), was significantly different in arable field and the early succession stage, but no distinct microbial communities were observed for the intermediate and the late succession stages. The most determinant factors in shaping the soil-borne microbial communities were phosphorous and NH(4)(+). Plant community composition and diversity did not have a significant effect on the belowground microbial community structure or diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号