首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presented study was designed to elucidate whether the cholinergic mechanisms control ovine antral slow waves in various physiological conditions, including feeding and various phases of migrating myoelectric complex (MMC). The investigations were carried out on six adult sheep of Polish Merino breed with seven bipolar electrodes surgically implanted onto the antral and small intestinal wall. In the course of chronic experiments, the myoelectric activity was recorded from these regions using the multichannel electroencephalograph. Experiments were performed on 48h fasted and non-fasted animals. During some of these experiments, sheep were fed with standard fodder. During control experiments 0.15M NaCl was slowly administered i.v. through the indwelling catheter and during other experiment, hexamethonium bromide (2.0 and 5.0mg/kg), atropine sulfate (0.02; 0.1; 0.5 and 1.5mg/kg) and pirenzepine dihydrochloride (0.02; 0.5 and 2.0mg/kg) were administered i.v. during phase 1-2a or 2b MMC. The drugs were also given in combinations. The recordings were analysed and the antral slow wave amplitudes and frequencies were calculated. Unlike the slow wave amplitude, either feeding or the anticholinergic drugs significantly increased slow wave frequency, especially when the given procedure was started during phase 2b MMC. The most pronounced effects were observed after hexamethonium given alone or in combinations. Thus, the cholinergic system modulates antral slow wave frequency in sheep.  相似文献   

2.
The effects of central and peripheral administration of muscarinic agonists and antagonists on small intestinal motility were examined in conscious rats chronically fitted with electrodes implanted in the duodeno-jejunal wall and a cannula in a cerebral lateral ventricle. Intracerebroventricular (i.c.v.) administration of either atropine or pirenzepine at doses from 1 to 10 micrograms, 15 min before a 3 and 6 g lab chow meal significantly reduced the duration of the postprandial disruption of the migrating myoelectric complexes (MMC). The reduction was significantly greater for atropine, a mixed M1 and M2 muscarinic receptor antagonist, than for pirenzepine, an antagonist with a high affinity for M1 receptors. At a higher dose (10 micrograms) intra peritoneal (i.p.) administration of atropine or pirenzepine did not modify the postprandial disruption of MMC. Oxotremorine (10 ng) a M2 agonist, but not McNeil A343 (5 micrograms), a selective M1 agonist, given i.c.v. in fasted rats disrupted for 1.5 h the MMC pattern. At the same doses given i.p. oxotremorine and McNeil A343 disrupted the MMC for 15 and 45 min respectively. We conclude that the postprandial changes in the small intestinal motility involve muscarinic receptors, mainly of M2 subtype, at the level of the central nervous system.  相似文献   

3.
Effects of pirenzepine, known as a muscarinic receptor antagonist, on the contraction of dog gallbladder elicited by cholecystokinin (CCK) were examined in comparison with atropine and hexamethonium ones. Intraluminal gallbladder pressure in an in situ anaesthetized dog model was chosen for studying gallbladder motility. The intravenous administration of pirenzepine (0.75 mg/kg b.wt.), atropine (3 mg/kg b.wt.) or hexamethonium (5 mg/kg b.wt.) elicited a marked decrease in the increase of intraluminal gallbladder pressure induced by intravenous bolus injections of CCK (0.25-2 Ivy dog unit/kg b.wt.) and by continuous infusion of CCK (0.025-0.4 Ivy dog unit/kg b.wt./min). It was concluded that CCK induced gallbladder contractions were influenced by both nicotinic and muscarinic receptors.  相似文献   

4.
Anticholinergic drugs are well-known to cause adverse effects, such as constipation, but their effects on baseline contractile activity in the gut driven by slow waves is not well established. In a video-based gastrointestinal motility monitoring (GIMM) system, a mouse's small intestine was placed in Krebs solution and recorded using a high definition camera. Untreated controls were recorded for each specimen, then treated with a therapeutic concentration of the drug, and finally, treated with a supratherapeutic dose of the drug. Next, the video clips showing gastrointestinal motility were processed, giving us the segmentation motions of the intestine, which were then converted via Fast Fourier Transform (FFT) into their respective frequency spectrums. These contraction quantifications were analyzed from the video recordings under standardised conditions to evaluate the effect of drugs. Six experimental trials were included with benztropine and promethazine treatments. Only the supratherapeutic dose of benztropine was shown to significantly decrease the amplitude of contractions; at therapeutic doses of both drugs, neither frequency nor amplitude was significantly affected. We have demonstrated that intestinal slow waves can be analyzed based on the colonic frequency or amplitude at a supratherapeutic dose of the anticholinergic medications. More research is required on the effects of anticholinergic drugs on these slow waves to ascertain the true role of ICC in neurologic control of gastrointestinal motility.  相似文献   

5.
INTRODUCTION: Donor nutritional status may be a determinant of small bowel (SB) quality following storage. In this study, we investigated the effect of donor nutritional status and a proven nutrient-rich preservation solution on graft quality following cold storage. METHODS: Rats were fasted (12-14 h) or non-fasted. SB (n=6) was flushed vascularly with modified University of Wisconsin (UW) solution and flushed luminally with UW or an amino acid-rich (AA) solution as follows: Fasted. UWV, none; UWL, UW solution; AAL, AA solution. Non-fasted. UWV, none; UWL, UW solution; AAL, AA solution. Energetics, peroxidation (malondialdehyde; MDA), glutathione and histology were assessed over 24 h at 4 degrees C. RESULTS: Energetics (ATP, ATP/ADP, and energy charge) were significantly higher in AAL (fasted and non-fasted) groups than other groups. However, there were no differences in energetics parameters between fasted and non-fasted animals in all groups. MDA was higher in fasted groups than non-fasted tissues; interestingly, AAL values were up to 10-fold lower than other groups. Higher glutathione levels were detected in non-fasted AAL tissues. Mucosal integrity was markedly superior in luminally treated tissues (UWL and AAL) in fasted and non-fasted states. Most noteably, AAL tissues from fasted animals exhibited grade 2 injury (villus clefting), whereas normal mucosa was observed in non-fasted tissues (grade 0). CONCLUSION: Luminal flushing and a nutrient-rich preservation solution improve energetics, oxidative stress, and mucosal integrity during storage. Poorer donor nutritional status does not affect energetics throughout storage, but causes mucosal injury as a result of increased oxidative stress, even after a brief period of donor fasting.  相似文献   

6.
Muscarinic receptors on epithelial cells mediate intestinal secretion, while those in intestinal smooth muscle mediate motility. Experiments were carried out to determine whether the muscarinic receptors mediating each of these two functions in intestinal tissue might be associated with differences in the way agonist and antagonist drugs interact with the receptors. The inhibition constant (Kj) values for atropine, pirenzepine, and oxotremorine competition of specifically bound (3H)QNB were determined using membrane preparations from the muscular coat and from epithelial cells of rat jejunum, ileum, and colon. The Kj values of atropine were similar (1.2-10 nM) when comparing muscle layers and epithelial cells from any intestinal region. In contrast, the Kj values for pirenzepine were significantly higher in membranes from the musculature (400-1,200 nM) than in any of the epithelial cell membranes (20-100 nM). Kj values for pirenzepine in gut muscle were similar to those in heart (300 nM), whereas the Kj values in the cerebral cortex (39 nM) and the epithelial cell membranes closely approximated one another. The Kj values for oxotremorine competition of QNB binding in all intestinal muscular tissues (29-48 nM) and in heart (16 nM) were less than those of the intestinal epithelial cells (100-1,300 nM) or cerebral cortex (71 nM). Thus, pirenzepine and oxotremorine binding studies show that the nature of interactions between these agents and muscarinic sites is different when comparing epithelial cells and musculature of the gut.  相似文献   

7.
Summary Quantitative macroscopic, light-microscopic and electron-microscopic studies were performed on the small intestine of fasted and non-fasted adult, male Sprague-Dawley rats. In non-fasted rats the small intestine was longer than in fasted rats. Due to the presence of villi the surface area in the duodenum and the jejunum was enlarged about six times. The microvilli on the villous crests caused a surface enlargement by 13 times in the duodenum (value corrected for overestimation due to section thickness), and 19 times in the jejunum of the fasted rats. At the base of the villi these values were about 50% lower. It was calculated that, in the fasted rats, the total enlargement of the luminal surface area — due to villi and microvilli — was 63 times in the duodenum and 81 times in the jejunum (corrected for section thickness).Differences between the villous crest epithelium and the villous base epithelium were also found with regard to the mean cell height, and the volume densities of the absorptive cell nuclei, the mitochondria, and the paracellular channels.Supported by grants from the Swedish Medical Research Council (Project No. 12X-2298), from the Swedish Group-Insurance Co. Förenade Liv, from Tore Nilson's Fund for Medical Research and from the Medical Faculty, University of Umeå  相似文献   

8.
The aim of the present study is to investigate if the nucleus raphe obscurus (NRO) participate in regulating the gallbladder motility in rabbits. Rabbits were fasted for about 20-24 hours. After anesthetization with urethane, an incision was made at the middle of the abdomen and the gallbladder was exposed. A frog bladder connected with force transducer was inserted into the gallbladder through a small incision at the funds to record gallbladder motility (tonic contraction and phasic contraction). Glutamate and other chemicals were microinjected into NRO through a vitreous tube attached to a microsyringe. We found both the tonic contraction and phasic contraction of the gallbladder were enhanced after the glutamate was injected into NRO. GABA inhibited gallbladder motility if administrated in the same way. Microinjection of ketamine, NMDA (N-methyl-D-aspartate) receptor antagonist, into NRO inhibited the phasic contraction of gallbladder. Administration of CNQX (6-cyano-7-nitroquinoxaline-2, 3-dione), a non-NMDA receptor antagonist, enhanced the gallbladder tonic contraction. Pretreatment of ketamine into NRO attenuated the effect of glutamate, while pretreatment of CNQX had no effect on it. Intravenous injection of atropine or vagotomy completely abolished the effect of glutamate on gallbladder phasic contraction, while intravenous injection of phentolamine or transecting the spinal cord at T3-4 inhibited that on tonic contraction. Intravenous injection of propranolol did not influence the glutamate effect. These results suggested that glutamate in NRO participates in regulating the motility of the gallbladder through NMDA receptor. When excited, the NMDA receptors in NRO enhance the phasic contraction of the gallbladder through vagus nerve and peripheral M-receptors, and enhance the tonic contraction of the gallbladder through sympathetic nerve and peripheral alpha-receptors. GABA in NRO is also involved in the regulation of gallbladder motility.  相似文献   

9.
The non-steroidal antiinflammatory drugs, such as an indomethacin (IND), cause mucosal ulceration and increase the mucosal vascular permeability in the gastrointestinal (GI) tract. Some exogenous agents, e.g. the atropine, can protect the GI mucosa against these ulcerogenic effects. The gastrointestinal functions and mucosal protection, however, are regulated by the vagal nerve. The aims of this study was to examine the dependence of atropine-induced GI cytoprotection to the vagal innervation against the development of IND-caused ulcers and microvascular damage in the mucosa of stomach and small intestine in rats. METHODS: the observations were carried out on CFY-strain rats. The mucosal damage was produced by subcutaneous administration of IND in a 20 mg/kg dose 24 h prior to the killing of animals at the same time as the start of atropine-application, which was given in a small dose (0.1 mg/kg) every 5 h. The subdiaphragmatic bilateral surgical vagotomy was done 24 h before the experiment. The vascular permeability, indicated by the microvascular endothel damage, was measured by the appearance and concentration of intravenously administered Evans blue into the GI mucosa. The number and severity of mucosal lesions and the Evans blue content of mucosa were determined in the stomach and small intestine. RESULTS: (1) The IND caused mucosal ulcers and Evans blue extravasation into the mucosa of the stomach and small intestine. (2) The IND-induced mucosal ulceration and vascular permeability significantly decreased after atropine-administration in the same parts of GI tract. (3) The extent of cytoprotective effect of atropine against the IND was decreased after bilateral surgical vagotomy. CONCLUSIONS: (1) The IND causes microvascular endothel damage in the stomach and small intestinal. (2) The atropine has a cytoprotective effect in the stomach and small intestine against the aggressive effects of IND without decrease of gastric acid secretion. (3) The intact vagal nerve is necessary to the function of cytoprotective mechanisms of atropine against the IND.  相似文献   

10.
Giant spike bursts (GSBs) or giant contractions (GCs) and repetitive bursts of action potentials (RBAPs) are less common motility patterns as compared to the migrating motor complex (MMC), fed pattern or minute rhythm. They are present in small and large intestines in various animal species. Their occurrence in ruminants has not been satisfactorily evidenced. Thus, the aim of this study was to present the incidence of these patterns in the ovine small bowel before and after different doses of cholecystokinin octapeptide (CCK-OP) and cerulein as well as to demonstrate the motor correlates of RBAPs.Six sheep equipped with electrodes in the antrum and entire small intestine and with duodenal strain gauge force transducer were used. In fasted and non-fasted animals, continuous myoelectrical and motor recordings were performed before and after the slow injection of cholecystokinin octapeptide (20, 200 and 2000 ng/kg i.v.) and cerulein (1, 10 and 100 ng/kg i.v.) during phase 2 MMC. The incidence of GSBs and RBAPs was assessed and these patterns arrived before and after Cholecystokinin (CCK). During the control period RBAPs were most frequently observed in the ileum. GSBs and RBAPs were induced by the highest dose of the hormones. RBAPs exhibited the motor correlates and their tonic component was more pronounced following CCK-OP and cerulein injection.It is concluded that GSBs and RBAPs occur in the small intestine and the administration of CCK peptides further increases their incidence.  相似文献   

11.
These experiments were performed to study the effect of oxytocin (OT) and it's specific receptor on gallbladder motility in rabbits. The fasted New Zealand white rabbits (2.0-2.5 kg) were anaesthetized by urethane (1 g/kg). The gallbladder pressure was recorded continuously to monitor the gallbladder motility. Systemic OT (0.01, 0.02, 0.04 mg/kg, iv) did not affect the gallbladder pressure, but dose-dependently increased the frequency of phasic contraction. Five min after OT administration (0.04 mg/kg, iv), the strength of phasic contraction increased to 0.23 +/- 0.08 mmHg/min (P < 0.01, n = 6). The gallbladder motility returned to normal 15 min later after OT treatment. Intravenous injection of atosiban (0.04 mg/kg, iv), an OT receptor antagonist, decreased the strength of gallbladder phasic contraction but did not affect gallbladder pressure. Pretreatment of atosiban (0.04 mg/kg, iv) completely abolished the systemic OT effect on gallbladder. Vasopressin (VP) (0.1 - 0.5 IU/kg, iv) dose-dependently decrease the gallbladder pressure but did not affect the phasic contraction. MK-329 (0.4 mg/kg, iv), the CCK-A receptor antagonist, L-365, 260 (0.4 mg/kg, iv), the CCK-B receptor antagonist and atropine (0.2 mg/kg, iv), the M receptor antagonist, did not affect the OT effect on gallbladder motility. We suggest that endogenous OT regulates gallbladder phasic contraction through specific OT receptor. This effect is independent of the peripheral CCK and M receptors.  相似文献   

12.
Cholecystokinin (CCK) can exert multiple actions on intestinal motility but its effect on the small-intestinal 'minute rhythm' (MR) is virtually unknown. Therefore, the electrical activity from the abomasal antrum, duodenal bulb, duodenum, jejunum and ileum was continuously recorded in six sheep before, during and after slow intravenous administration, of three doses each, of cholecystokinin-octapeptide (CCK-OP) and cerulein. In four of these sheep, two additional electrodes and the strain gauge force transducer were also inserted in the duodenum. Chronic experiments were performed in the fasted and non-fasted animals and saline or CCK peptides were injected during phases 1, 2a or 2b of the duodenal migrating myoelectric complex (MMC). The administration of both CCK peptides in various doses evoked an inhibitory effect mostly in the duodenal bulb, except for the lowest dose of cerulein. The effects of 20 times greater doses of CCK-OP than that of cerulein were more pronounced. The introduction of both CCK peptides during phase 1 of the MMC produced no marked or significant response. In non-fasted animals, the effects of both hormonal peptides, given during phase 2b of the MMC, were often stronger than those given during phase 2a, while in fasted animals the effects of CCK peptides, administered in the course of phases 2a and 2b of the MMC, were similar. Both higher doses of CCK peptides increased the number of spike bursts within the given MR pattern in the duodenum and decreased the incidence of MR mostly in the duodenal bulb. The inhibitory effects of both CCK peptides on the bulbar MR exhibited a dose-response character, though the lowest dose often evoked the slight stimulatory response. It is concluded that CCK principally exerts an inhibitory effect upon the MR in the duodenal bulb and modifies the MR in the duodenum by increasing the spike burst number in a given MR pattern. Both these actions of CCK peptides seem to be physiological. There is a positive relationship between the intensity of the refractory period and the demonstrated effect of CCK in the duodenum.  相似文献   

13.
The cytoprotective effect of a small dose of atropine was proved against the indomethacin (IND)-caused gastrointestinal (GI) mucosal damage. This protective effect of atropine disappeared in the acute phase of surgical vagotomy (ASV) on the vagally-innervated parts of GI tract. The aims of our observations were: 1) to examine the effect of chronic surgical vagotomy (CSV) on the cytoprotective action of atropine in the GI tract; and 2) to compare the effects of ASV and CSV on the GI cytoprotection caused by atropine against IND-induced mucosal damage and vascular permeability in rats. The IND was given s.c. 24 h prior to the killing of the animals in a dose of 20 mg x kg(-1). Bilateral surgical vagotomy or sham operation were carried out 24 h (ASV) or 14 d (CSV) before IND-application. Atropine was given i.p. every 5 h after IND-treatment in a dose of 0.1 mg x kg(-1). The number of macroscopical mucosal ulcerations was noted and its severity was calculated by semiquantitative scale in the stomach, small intestine and three equal parts of colon. Vascular permeability was measured by Evans-blue leakage into the mucosal tissue. It has been found that: 1) Tte small dose of atropine significantly decreased the IND-induced mucosal damage and vascular permeability on the stomach, small intestine and the vascular permeability on the proximal colon; 2) the small dose of atropine did not cause any changes in the appearance of IND-induced mucosal lesions and in Evans blue concentration in the mucosa after ASV, but it significantly decreased the IND-caused mucosal damage and Evans blue concentration in the mucosa of stomach, small intestine and proximal colon after CSV; 3) the IND-induced mucosal damage and vascular permeability treated with atropine (given in cytoprotective dose) were significantly smaller after CSV than that after ASV on the stomach, small intestine and proximal colon. It has been concluded that the intact vagal nerve has an essential role in the appearance of cytoprotective mechanisms of atropine in GI tract.  相似文献   

14.
The aim of this investigation was to determine whether a shorter fasting period than the one historically employed for the charcoal meal test, could be used when measuring gastric emptying and intestinal transit within the same animal, and to ascertain whether the scientific outcome would be affected by this benefit to animal welfare. Rats and mice were fasted for 0, 3, 6 or 18 hours before the oral administration of vehicle or atropine. One hour later, the animals were orally administered a charcoal meal, then 20 minutes later, they were killed and the stomach and small intestine were removed. Intestinal transit time (the position of the charcoal front as a percentage of the total length of the small intestine) and relative gastric emptying (weight of stomach contents) were measured. Rats and mice fasted for six hours showed results for gastric emptying and intestinal transit which were similar to those obtained in animals fasted for 18 hours. Reducing the fasting period reduced the body weight loss in both species, and mice on shorter fasts could be group-housed, as hunger-induced fighting was lessened. Therefore, a fasting period of six hours was subsequently adopted for charcoal meal studies at our institution.  相似文献   

15.
The aims of the study were to evaluate characteristics of spontaneous motility and of the ascending excitatory peristaltic reflex (AEPR) and intraluminal cross-sectional area in the isolated perfused porcine duodenum. The parameters were measured by an intraluminal catheter by use of the perfused side-hole technique and impedance planimetry. Respiratory parameters such as pH and oxygen consumption and the arterial perfusion pressure were monitored and did not vary significantly throughout the study time. Spontaneous motility was intense at the beginning but declined and disappeared within 45-90 min. It was abolished by atropine, epinephrine, and UK-14,304 (an alpha 2-adrenoceptor agonist). Secondary motility was evoked by intraluminal balloon distensions by raising the balloon pressure to 1.5 kPa for 1-min periods. Reproducible results regarding the AEPR, external balloon diameters to elicit the AEPR, and intraluminal cross-sectional area were obtained. The order of potency (pD2 values) for inhibition of the AEPR was the selective M3-receptor antagonist 4-DAMP greater than atropine greater than the selective M2-receptor antagonist AFDX-116 greater than the selective M1-receptor antagonist pirenzepine greater than hexamethonium. 4-DAMP was 16 and 29 times more potent than AFDX-116 (P less than 0.02) and pirenzepine (P less than 0.02). None of the drugs altered the intraluminal cross-sectional area during the balloon distensions. The model provides the opportunity for physiological and pharmacological studies of duodenal motility and duodenal cross-sectional area devoid of extrinsic neural and endocrine effects. The abolishment of the AEPR by atropine is caused by blockade of the M3-receptor in the porcine duodenum.  相似文献   

16.
Cui YY  Zhu L  Wang H  Advenier C  Chen HZ  Devillier P 《Life sciences》2008,82(17-18):949-955
Gastro-oesophageal acid reflux may cause airway responses such as cough, bronchoconstriction and inflammation in asthmatic patients. Studies in humans or in animals have suggested that these responses involve cholinergic nerves. The purpose of this study was to investigate the role of the efferent vagal component on airway microvascular leakage induced by instillation of hydrochloric acid (HCl) into the oesophagus of guinea-pigs and the subtype of muscarinic receptors involved. Airway microvascular leakage induced by intra-oesophageal HCl instillation was abolished by bilateral vagotomy or by the nicotinic receptor antagonist, hexamethonium. HCl-induced leakage was inhibited by pretreatment with atropine, a non-specific muscarinic receptor antagonist, and also by pretreatment with either pirenzepine, a muscarinic M(1) receptor antagonist, or 4-DAMP, a muscarinic M(3) receptor antagonist. Pirenzepine was more potent than atropine and 4-DAMP. These antagonists were also studied on airway microvascular leakage or bronchoconstriction induced by intravenous administration of acetylcholine (ACh). Atropine, pirenzepine and 4-DAMP inhibited ACh-induced airway microvascular leakage with similar potencies. In sharp contrast, 4-DAMP and atropine were more potent inhibitors of ACh-induced bronchoconstriction than pirenzepine. Methoctramine, a muscarinic M(2) receptor antagonist, was ineffective in all experimental conditions. These results suggest that airway microvascular leakage caused by HCl intra-oesophageal instillation involves ACh release from vagus nerve terminals and that M(1) and M(3) receptors play a major role in cholinergic-mediated microvascular leakage, whereas M(3) receptors are mainly involved in ACh-induced bronchoconstriction.  相似文献   

17.
Since few previous studies have examined the effects of urocortin on physiological fed and fasted gastrointestinal motility, we administered urocortin intracerebroventricularly (icv) or intravenously (iv) in freely moving conscious rats and examined the changes in antral and duodenal motility. Icv and iv injection of urocortin disrupted fasted motor patterns of gastroduodenal motility, which were replaced by fed-like motor patterns. When urocortin was given icv and iv in the fed state, the motor activity remained like the fed patterns but % motor index (%MI) was decreased in the antrum and increased in the duodenum. Increase in the %MI in the duodenum induced by urocortin was shown as a nonpropagated event, since the transit of nonnutrient contents in the duodenum was decreased by icv and iv injection of urocortin. Changes in the gastroduodenal motility induced by icv injection of urocortin were abolished in animals with truncal vagotomy but not altered in animals with mechanical sympathectomy, suggesting that the vagal pathway may mediate the central action of urocortin. Neither urocortin antiserum nor alpha-helical CRF-(9-41) affected fed and fasted gastroduodenal motility, suggesting that endogenous urocortin is not involved in regulation of basal gastroduodenal motility.  相似文献   

18.
Gastrointestinal ulcerogenic effect of indomethacin is causally related with an endogenous prostaglandin (PG) deficiency, yet the detailed mechanism remains unknown. We examined the effect of various PGE analogues specific to EP receptor subtypes on these lesions in rats and mice, and investigated which EP receptor subtype is involved in the protective action of PGE(2). Fasted or non-fasted animals were given indomethacin s.c. at 35 mg/kg for induction of gastric lesions or 10-30 mg/kg for intestinal lesions, and they were killed 4 or 24 h later, respectively. Various EP agonists were given i.v. 10 min before indomethacin. Indomethacin caused hemorrhagic lesions in both the stomach and intestine. Prior administration of 16,16-dimethyl PGE(2) (dmPGE(2)) prevented the development of damage in both tissues, and the effect in the stomach was mimicked by 17-phenyl PGE2 (EP1), while that in the small intestine was reproduced by ONO-NT-012 (EP3) and ONO-AE-329 (EP4). Butaprost (EP2) did not have any effect on either gastric or intestinal lesions induced by indomethacin. Similar to the findings in rats, indomethacin caused gastric and intestinal lesions in both wild-type and knockout mice lacking EP1 or EP3 receptors. However, the protective action of dmPGE(2) in the stomach was observed in wild-type and EP3 receptor knockout mice but not in mice lacking EP1 receptors, while that in the intestine was observed in EP1 knockout as well as wild-type mice but not in the animals lacking EP3 receptors. These results suggest that indomethacin produced damage in the stomach and intestine in a PGE(2)-sensitive manner, and exogenous PGE(2) prevents gastric and intestinal ulcerogenic response to indomethacin through different EP receptor subtypes; the protection in the stomach is mediated by EP1 receptors, while that in the intestine mediated by EP3/EP4 receptors.  相似文献   

19.
An in vivo model has been developed to study nerve connections in the canine intestine, using spread of field stimulated contractions recorded proximally and distally with strain gauges and local intra-arterial injections of drugs. Excitation spread orally for several centimetres, more effectively at lower frequencies of field stimulation. This excitation was blocked by local hexamethonium or by a combination of atropine and naloxone (each of which reduced the contractions). Distal excitation occurred after a longer delay than oral excitation; during the delay there was frequently an initial relaxation response. Distal excitation was greater at higher frequencies of field stimulation, but like oral excitation it was blocked by hexamethonium or by a combination of atropine and naloxone. Distal relaxation responses were unaffected by atropine or naloxone, but were abolished by hexamethonium. "Off" contractions, those that followed cessation of field stimulation, occurred at higher frequencies of field stimulation proximally and distally near the site of field stimulation and were blocked by atropine but not by naloxone or hexamethonium. The effects of all agents given locally extended beyond the sites of injection. These results suggest that a chain of cholinergic nerves with nicotinic synapses transmit excitation orally and distally to circular muscle; these effects seem to be facilitated proximally and distally by opioid nerves and to be inhibited initially distally by a noncholinergic mechanism. Explanations of these findings are proposed.  相似文献   

20.
CFY strain rats (both sexes, 180-210 g) were fasted for 24 hr. Several anticholinergic agents atropine, oxyphencyclimine, propantheline, trantheline, hexocyclium) were administered (i.p.) in equimolar doses (28.78 nM X kg-1), and to compared to the cyto-protective effect of atropine sulfate (0.01 mg X kg-1). Their effects were studied in (1) one hour pylorus-ligated rats, being given when the surgical procedure had just finished: volume and acid output were measured; (2) the gastric mucosal lesions induced by 0.6 M HCl. Drugs were applied 30 min before the administration of HCl (1 ml, i.g.). Rats were killed 1 hr later and the number and severity of lesions were calculated. We found that (1) atropine, oxyphencyclimine, and propantheline did not significantly decrease acid secretion, while trantheline and hexocyclium inhibited acid output; (2) all drugs provided significant protection against the gastric damage induced by HCl; (3) no significant difference was found in the extent of protection produced by the different drugs in the HCl-model. We conclude that atropine, oxyphencyclimine, and propantheline are gastric cytoprotective agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号