首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
gamma-Secretase is an unusual protease with an intramembrane catalytic site that cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Genetic and biochemical studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin composed of its N- and C-terminal fragments, nicastrin, Aph-1, and Pen-2. Here we demonstrated that certain compounds, including protein kinase inhibitors and their derivatives, act directly on purified gamma-secretase to selectively block cleavage of APP- but not Notch-based substrates. Moreover, ATP activated the generation of the APP intracellular domain and Abeta, but not the generation of the Notch intracellular domain by the purified protease complex, and was a direct competitor of the APP-selective inhibitors, as were other nucleotides. In accord, purified gamma-secretase bound specifically to an ATP-linked resin. Finally, a photoactivable ATP analog specifically labeled presenilin 1-C-terminal fragments in purified gamma-secretase preparations; the labeling was blocked by ATP itself and APP-selective gamma-secretase inhibitors. We concluded that a nucleotide-binding site exists within gamma-secretase, and certain compounds that bind to this site can specifically modulate the generation of Abeta while sparing Notch. Drugs targeting the gamma-secretase nucleotide-binding site represent an attractive strategy for safely treating Alzheimer disease.  相似文献   

2.
Presenilin 1 (PS1) is a critical component of the gamma-secretase complex, which is involved in the cleavage of several substrates including the amyloid precursor protein (APP) and the Notch receptor. Recently, the low density receptor-related protein (LRP) has been shown to be cleaved by a gamma-secretase-like activity. We postulated that LRP may interact with PS1 and tested its role as a competitive substrate for gamma-secretase. In this report we show that LRP colocalizes and interacts with endogenous PS1 using coimmunoprecipitation and fluorescence lifetime imaging microscopy. In addition, we found that gamma-secretase active site inhibitors do not disrupt the interaction between LRP and PS1, suggesting that the substrate associates with a gamma-secretase docking site located in close proximity to PS1. This is analogous to APP-gamma-secretase interactions. Finally, we show that LRP competes with APP for gamma-secretase activity. Overexpression of a truncated LRP construct consisting of the C terminus, the transmembrane domain, and a short extracellular portion leads to a reduction in the levels of the Abeta40, Abeta42, and p3 peptides without changing the total level of APP expression. In addition, transfection with the beta-chain of LRP causes an increase in uncleaved APP C-terminal fragments and a concomitant decrease in the signaling effects of the APP intracellular domain. In conclusion, LRP is a PS1 interactor and can compete with APP for gamma-secretase enzymatic activity.  相似文献   

3.
Presenilin (PS)-dependent gamma-secretase cleavage is the final proteolytic step in generating amyloid beta protein (A beta), a key peptide involved in the pathogenesis of Alzheimer's disease. PS undergoes endoproteolysis by an unidentified 'presenilinase' to generate the functional N-terminal and C-terminal fragment heterodimers (NTF/CTF) that may harbor the gamma-secretase active site. To better understand the relationship between presenilinase and gamma-secretase, we characterized the biochemical properties of presenilinase and compared them with those of gamma-secretase. Similar to gamma-secretase, presenilinase was most active at acidic pH 6.3. Aspartyl protease inhibitor pepstatin A blocked presenilinase activity with an IC50 of approximately 1 microM. Difluoroketone aspartyl protease transition state analogue MW167 was relatively selective for presenilinase (IC50 < 1 microM) over gamma-secretase (IC50-16 microM). Importantly, removing the transition state mimicking moiety simultaneously abolished both presenilinase and gamma-secretase inhibition, suggesting that presenilinase, like gamma-secretase, is an aspartyl protease. Interestingly, several of the most potent gamma-secretase inhibitors (IC50 = 0.3 or 20 nM) failed to block presenilinase activity. Although de novo generation of PS1 fragments coincided with production of A beta in vitro, blocking presenilinase activity without reducing pre-existing fragment levels permitted normal de novo generation of A beta and amyloid intracellular domain. Therefore, presenilinase has characteristics of an aspartyl protease, but this activity is distinct from gamma-secretase.  相似文献   

4.
The Alzheimer disease-associated presenilin (PS) proteins apparently provide the active site of gamma-secretase, an unusual intramembrane-cleaving aspartyl protease. PSs principally occur as high molecular weight protein complexes that contain nicastrin (Nct) and additional so far unidentified components. Recently, PEN-2 has been implicated in gamma-secretase function. Here we identify PEN-2 as a critical component of PS1/gamma-secretase and PS2/gamma-secretase complexes. Strikingly, in the absence of PS1 and PS1/PS2, PEN-2 levels are strongly reduced. Similarly, PEN-2 levels are reduced upon RNA interference-mediated down-regulation of Nct. On the other side, down-regulation of PEN-2 by RNA interference is associated with reduced PS levels, impaired Nct maturation, and deficient gamma-secretase complex formation. We conclude that PEN-2 is an integral gamma-secretase complex component and that gamma-secretase complex components are expressed in a coordinated manner.  相似文献   

5.
The characterization of the enzymes responsible for amyloid beta-peptide (Abeta) production is considered to be a primary goal towards the development of future therapeutics for the treatment of Alzheimer's disease. Inhibitors of gamma-secretase activity were critical in demonstrating that the presenilins (PSs) likely comprised at least part of the active site of the gamma-secretase enzyme complex, with two highly conserved membrane aspartates presumably acting as catalytic residues. However, whether or not these aspartates are actually the catalytic residues of the enzyme complex or are merely essential for normal PS function and/or maturation is still unknown. In this paper, we report the development of reactive inhibitors of gamma-secretase activity that are functionally irreversible. Since such inhibitors have been shown to bind catalytic residues in other aspartyl proteases (e.g., HIV protease), they might be used to determine if the transmembrane aspartates of PSs are involved directly in substrate cleavage.  相似文献   

6.
Presenilins (PS) are thought to contain the active site for presenilinase endoproteolysis of PS and gamma-secretase cleavage of substrates. The structural requirements for PS incorporation into the gamma-secretase enzyme complex, complex stability and maturation, and appropriate presenilinase and gamma-secretase activity are poorly understood. We used rescue assays to identify sequences in transmembrane domain one (TM1) of PS1 required to support presenilinase and gamma-secretase activities. Swap mutations identified an N-terminal TM1 domain that is important for gamma-secretase activity only and a C-terminal TM1 domain that is essential for both presenilinase and gamma-secretase activities. Exchange of residues 95-98 of PS1 (sw95-98) completely abolishes both activities while the familial Alzheimer's disease mutation V96F significantly inhibits both activities. Reversion of residue 96 back to valine in the sw95-98 mutant rescues PS function, identifying V96 as the critical residue in this region. The TM1 mutants do not bind to an aspartyl protease transition state analog gamma-secretase inhibitor, indicating a conformational change induced by the mutations that abrogates catalytic activity. TM1 mutant PS1 molecules retain the ability to interact with gamma-secretase substrates and gamma-secretase complex members, although Nicastrin stability is decreased by the presence of these mutants. gamma-Secretase complexes that contain V96F mutant PS1 molecules display a partial loss of function for gamma-secretase that alters the ratio of amyloid-beta peptide species produced, leading to the amyloid-beta peptide aggregation that causes familial Alzheimer's disease.  相似文献   

7.
Gamma-secretase is a multi-component enzyme complex that performs an intramembranous cleavage, releasing amyloid-beta (Abeta) peptides from processing intermediates of the beta-amyloid precursor protein. Because Abeta peptides are thought to be causative for Alzheimer's disease, inhibiting gamma-secretase represents a potential treatment for this neurodegenerative condition. Whereas inhibitors directed at the active center of gamma-secretase inhibit the cleavage of all its substrates, certain non-steroidal antiinflammatory drugs (NSAIDs) have been shown to selectively reduce the production of the more amyloidogenic Abeta(1-42) peptide without inhibiting alternative cleavages. In contrast to the majority of previous studies, however, we demonstrate that in cell-free systems the mode of action of selected NSAIDs and their derivatives, depending on the concentrations used, can either be classified as modulatory or inhibitory. At modulatory concentrations, a selective and, with respect to the substrate, noncompetitive inhibition of Abeta(1-42) production was observed. At inhibitory concentrations, on the other hand, biochemical readouts reminiscent of a nonselective gamma-secretase inhibition were obtained. When these compounds were analyzed for their ability to displace a radiolabeled, transition-state analog inhibitor from solubilized enzyme, noncompetitive antagonism was observed. The allosteric nature of radioligand displacement suggests that NSAID-like inhibitors change the conformation of the gamma-secretase enzyme complex by binding to a novel site, which is discrete from the binding site for transition-state analogs and therefore distinct from the catalytic center. Consequently, drug discovery efforts aimed at this site may identify novel allosteric inhibitors that could benefit from a wider window for inhibition of gamma (42)-cleavage over alternative cleavages in the beta-amyloid precursor protein and, more importantly, alternative substrates.  相似文献   

8.
Gamma-secretase is a high molecular weight multicomponent protein complex with an unusual intramembrane-cleaving aspartyl protease activity. Gamma-secretase is intimately associated with Alzheimer disease because it catalyzes the proteolytic cleavage, which leads to the liberation of amyloid beta-peptide. At least presenilin (PS), Nicastrin (Nct), APH-1, and PEN-2 are constituents of the gamma-secretase complex, with PS apparently providing the active site of gamma-secretase. Expression of gamma-secretase complex components is tightly regulated, however little is known about the assembly of the complex. Here we demonstrate that Nct undergoes a major conformational change during the assembly of the gamma-secretase complex. The conformational change is directly associated with gamma-secretase function and involves the entire Nct ectodomain. Loss of function mutations generated by deletions failed to undergo the conformational change. Furthermore, the conformational alteration did not occur in the absence of PS. Our data thus suggest that gamma-secretase function critically depends on the structural "activation" of Nct.  相似文献   

9.
Gamma-secretase is an intramembrane cleaving aspartyl protease complex intimately implicated in Alzheimer disease pathogenesis. The protease is composed of the catalytic subunit presenilin (PS1 or PS2), the substrate receptor nicastrin (NCT), and two additional subunits, APH-1 (APH-1a, as long and short splice forms (APH-1aL, APH-1aS), or APH-1b) and PEN-2. Apart from the Alzheimer disease-associated beta-amyloid precursor protein, gamma-secretase has been shown to cleave a large number of other type I membrane proteins. Despite the progress in elucidating gamma-secretase function, basic questions concerning the precise organization of its subunits, their molecular interactions, and their exact stoichiometry in the complex are largely unresolved. Here we isolated endogenous human gamma-secretase from human embryonic kidney 293 cells and investigated the subunit architecture of the gamma-secretase complex formed by PS1, NCT, APH-1aL, and PEN-2 by chemical cross-linking. Using this approach, we provide evidence for the close neighborhood of the PS1 N- and C-terminal fragments (NTF and CTF, respectively), the PS1 NTF and PEN-2, the PS1 CTF and APH-1aL, and NCT and APH-1aL. We thus identify a previously unrecognized PS1 CTF/APH-1aL interaction, verify subunit interactions deduced previously from indirect approaches, and provide a model of the gamma-secretase complex subunit architecture. Finally, we further show that, like the PS1 CTF, the PS2 CTF also interacts with APH-1aL, and we provide evidence that these interactions also occur with the other APH-1 variants, suggesting similar subunit architectures of all gamma-secretase complexes.  相似文献   

10.
The presenilin (PS) proteins are components of the gamma-secretase activity, which is central in the pathogenesis of Alzheimer's disease. Here we present a novel cell-based reporter gene assay for the quantification of PS-controlled gamma-secretase cleavage of the Alzheimer amyloid precursor protein (APP). We show that this assay offers several advantages, including increased sensitivity and specificity, improved quantification of cleavage, and simultaneous detection of all gamma-secretase cleavages in APP. Furthermore, the APP assay can be used in parallel with a similar assay that records gamma-secretase cleavage of a Notch receptor. The use of these assays to analyze the effects of two known gamma-secretase inhibitors and postulated PS active site mutants on APP and Notch processing demonstrated that inhibitors and mutants that differently affect Notch and APP cleavage can be identified rapidly. The possibility in using these assays for high throughput screening of candidate gamma-secretase inhibitors for APP and Notch in parallel opens up new vistas to systematically search for novel inhibitors that selectively block APP cleavage while not affecting Notch signaling.  相似文献   

11.
Amyloid beta-peptide (Abeta) is generated by the consecutive cleavages of beta- and gamma-secretase. The intramembraneous gamma-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with gamma-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Abeta production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the gamma-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with gamma-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by gamma-secretase inhibitors results in delayed reinternalization of the beta-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in gamma-secretase processing and in trafficking.  相似文献   

12.
Gamma-secretase mediates the final proteolytic cleavage, which liberates amyloid beta-peptide (Abeta), the major component of senile plaques in the brains of Alzheimer disease patients. Therefore, gamma-secretase is a prime target for Abeta-lowering therapeutic strategies. gamma-Secretase is a protein complex composed of four different subunits, presenilin (PS), APH-1, nicastrin, and PEN-2, which are most likely present in a 1:1:1:1 stoichiometry. PS harbors the catalytically active site, which is critically required for the aspartyl protease activity of gamma-secretase. Moreover, numerous familial Alzheimer disease-associated mutations within the PSs increase the production of the aggregation-prone and neurotoxic 42-amino acid Abeta. Nicastrin may serve as a substrate receptor, although this has recently been challenged. PEN-2 is required to stabilize PS within the gamma-secretase complex. No particular function has so far been assigned to APH-1. The four components are sufficient and required for gamma-secretase activity. At least six different gamma-secretase complexes exist that are composed of different variants of PS and APH-1. All gamma-secretase complexes can exert pathological Abeta production. Assembly of the gamma-secretase complex occurs within the endoplasmic reticulum, and only fully assembled and functional gamma-secretase complexes are transported to the plasma membrane. Structural analysis by electron microscopy and chemical cross-linking reveals a water-containing cavity, which allows intramembrane proteolysis. Specific and highly sensitive gamma-secretase inhibitors have been developed; however, they interfere with the physiological function of gamma-secretase in Notch signaling and thus cause rather significant side effects in human trials. Modulators of gamma-secretase, which selectively affect the production of the pathological 42-amino acid Abeta, do not inhibit Notch signaling.  相似文献   

13.
Abeta42-lowering nonsteroidal anti-inflammatory drugs (NSAIDs) constitute the founding members of a new class of gamma-secretase modulators that avoid side effects of pan-gamma-secretase inhibitors on NOTCH processing and function, holding promise as potential disease-modifying agents for Alzheimer disease (AD). These modulators are active in cell-free gamma-secretase assays indicating that they directly target the gamma-secretase complex. Additional support for this hypothesis was provided by the observation that certain mutations in presenilin-1 (PS1) associated with early-onset familial AD (FAD) change the cellular drug response to Abeta42-lowering NSAIDs. Of particular interest is the PS1-DeltaExon9 mutation, which provokes a pathogenic increase in the Abeta42/Abeta40 ratio and dramatically reduces the cellular response to the Abeta42-lowering NSAID sulindac sulfide. This FAD PS1 mutant is unusual as a splice-site mutation results in deletion of amino acids Thr(291)-Ser(319) including the endoproteolytic cleavage site of PS1, and an additional amino acid exchange (S290C) at the exon 8/10 splice junction. By genetic dissection of the PS1-DeltaExon9 mutation, we now demonstrate that a synergistic effect of the S290C mutation and the lack of endoproteolytic cleavage is sufficient to elevate the Abeta42/Abeta40 ratio and that the attenuated response to sulindac sulfide results partially from the deficiency in endoproteolysis. Importantly, a wider screen revealed that a diminished response to Abeta42-lowering NSAIDs is common among aggressive FAD PS1 mutations. Surprisingly, these mutations were also partially unresponsive to gamma-secretase inhibitors of different structural classes. This was confirmed in a mouse model with transgenic expression of the PS1-L166P mutation, in which the potent gamma-secretase inhibitor LY-411575 failed to reduce brain levels of soluble Abeta42. In summary, these findings highlight the importance of genetic background in drug discovery efforts aimed at gamma-secretase, suggesting that certain AD mouse models harboring aggressive PS mutations may not be informative in assessing in vivo effects of gamma-secretase modulators and inhibitors.  相似文献   

14.
Campbell WA  Iskandar MK  Reed ML  Xia W 《Biochemistry》2002,41(10):3372-3379
The final proteolytic step to generate the amyloid beta-protein (Abeta) of Alzheimer's disease (AD) from beta-amyloid precursor protein (APP) is achieved by presenilin (PS)-dependent gamma-secretase cleavage. AD-causing mutations in PS1 and PS2 result in a selective and significant increase in production of the more amyloidogenic Abeta42 peptide. PS1 and PS2 undergo endoproteolysis by an unknown enzyme termed presenilinase to generate the functional complex of N- and C-terminal fragments (NTF/CTF). To investigate the endoproteolytic activity that generates active PS, we used a mammalian cell-free system that allows de novo human PS NTF and CTF generation. PS NTF and CTF generation in vitro was observed in endoplasmic reticulum (ER)-enriched fractions of membrane vesicles and to a lesser extent in Golgi/trans-Golgi-network (TGN)-enriched fractions. AD-causing mutations in PS1 and PS2 did not alter de novo generation of PS fragments. Removal of peripheral membrane-associated and cytosolic proteins did not prevent de novo generation of fragments, indicating that presenilinase activity corresponds to an integral membrane protein. Among several general inhibitors of different protease classes that blocked the presenilinase activity, pepstatin A was the most potent inhibitor. Screening available transition state analogue gamma-secretase inhibitors led to the identification of two compounds that were able to prevent the de novo generation of PS fragments, with an expected inhibition of Abeta generation. Our studies provide a biochemical approach to characterize and identify this elusive presenilinase.  相似文献   

15.
Gamma-secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1 and, Pen-2 that is responsible for the intramembrane proteolysis of various type I transmembrane proteins, including amyloid beta-precursor protein and Notch. The direct labeling of PS polypeptides by transition-state analogue gamma-secretase inhibitors suggested that PS represents the catalytic center of gamma-secretase. Here we show that one of the major gamma-secretase inhibitors of dipeptidic type, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), targets the C-terminal fragment of PS, especially the transmembrane domain 7 or more C-terminal region, by designing and synthesizing DAP-BpB (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine-4-(4-(8-biotinamido)octylamino)benzoyl)benzyl)methylamide), a photoactivable DAPT derivative. We also found that DAP-BpB selectively binds to the high molecular weight gamma-secretase complex in an activity-dependent manner. Photolabeling of PS by DAP-BpB is completely blocked by DAPT or its structural relatives (e.g. Compound E) as well as by arylsulfonamides. In contrast, transition-state analogue inhibitor L-685,458 or alpha-helical peptidic inhibitor attenuated the photolabeling of PS1 only at higher concentrations. These data illustrate the DAPT binding site as a novel functional domain within the PS C-terminal fragment that is distinct from the catalytic site or the substrate binding site.  相似文献   

16.
The Alzheimer's disease-associated beta-amyloid peptide is produced through cleavage of amyloid precursor protein by beta-secretase and gamma-secretase. gamma-Secretase is a complex containing presenilin (PS) as the catalytic component and three essential cofactors: Nicastrin, anterior pharynx defective (APH-1) and presenilin enhancer-2 (PEN-2). PS and signal peptide peptidase (SPP) define a novel family of aspartyl proteases that cleave substrates within the transmembrane domain presumptively using two membrane-embedded aspartic acid residues for catalysis. Apart from the two aspartate-containing active site motifs, the only other region that is conserved between PS and SPP is a PAL sequence at the C-terminus. Although it has been well documented that this motif is essential for gamma-secretase activity, the mechanism underlying such a critical role is not understood. Here we show that mutations in this motif affect the conformation of the active site of gamma-secretase resulting in a complete loss of PS binding to a gamma-secretase transition state analog inhibitor, Merck C. Analogous mutations in SPP significantly inhibit its enzymatic activity. Furthermore, these mutations also abolish SPP binding to Merck C, indicating that SPP and gamma-secretase share a similar active site conformation, which is dependent on the PAL motif. Exploring the amino acid requirements within this motif reveals a very small side chain requirement, which is conserved during evolution. Together, these observations strongly support the hypothesis that the PAL motif contributes to the active site conformation of gamma-secretase and of SPP.  相似文献   

17.
The intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch is mediated by the presenilin (PS, PS1/PS2)-gamma-secretase complex, the components of which also include nicastrin, APH-1, and PEN-2. In addition to its essential role in gamma-secretase activity, we and others have reported that PS1 plays a role in intracellular trafficking of select membrane proteins including nicastrin. Here we examined the fate of PEN-2 in the absence of PS expression or gamma-secretase activity. We found that PEN-2 is retained in the endoplasmic reticulum and has a much shorter half-life in PS-deficient cells than in wild type cells, suggesting that PSs are required for maintaining the stability and proper subcellular trafficking of PEN-2. However, the function of PS in PEN-2 trafficking is distinct from its contribution to gamma-secretase activity because inhibition of gamma-secretase activity by gamma-secretase inhibitors did not affect the PEN-2 level or its egress from the endoplasmic reticulum. Instead, membrane-permeable gamma-secretase inhibitors, but not a membrane-impermeable derivative, markedly increased the cell surface levels of PS1 and PEN-2 without affecting that of nicastrin. In support of its role in PEN-2 trafficking, PS1 was also required for the gamma-secretase inhibitor-induced plasma membrane accumulation of PEN-2. We further showed that gamma-secretase inhibitors specifically accelerated the Golgi to the cell surface transport of PS1 and PEN-2. Taken together, we demonstrate an essential role for PSs in intracellular trafficking of the gamma-secretase components, and that selective gamma-secretase inhibitors differentially affect the trafficking of the gamma-secretase components, which may contribute to an inactivation of gamma-secretase.  相似文献   

18.
The gamma-secretase complex catalyzes the cleavage of the amyloid precursor protein in its transmembrane domain resulting in the formation of the amyloid beta-peptide and the cytoplasmic APP intracellular domain. The active gamma-secretase complex is composed of at least four subunits: presenilin (PS), nicastrin, Aph-1, and Pen-2, where the presence of all components is critically required for gamma-cleavage to occur. The PS proteins are themselves subjected to endoproteolytic cleavage resulting in the generation of an N-terminal and a C-terminal fragment that remain stably associated as a heterodimer. Here we investigated the effects of modifications on the C terminus of PS1 on PS1 endoproteolysis, gamma-secretase complex assembly, and activity in cells devoid of endogenous PS. We report that certain mutations and, in particular, deletions of the PS1 C terminus decrease gamma-secretase activity, PS1 endoproteolysis, and gamma-secretase complex formation. We demonstrate that the N- and C-terminal PS1 fragments can associate with each other in mutants having C-terminal truncations that cause loss of interaction with nicastrin and Aph-1. In addition, we show that the C-terminal fragment of PS1 alone can mediate interaction with nicastrin and Aph-1 in PS null cells expressing only the C-terminal fragment of PS1. Taken together, these data suggest that the PS1 N- and C-terminal fragment intermolecular interactions are independent of an association with nicastrin and Aph-1, and that nicastrin and Aph-1 interact with the C-terminal part of PS1 in the absence of an association with full-length PS1 or the N-terminal fragment.  相似文献   

19.
Presenilins (PS1 and PS2) are supposed to be unusual aspartic proteases and components of the gamma-secretase complex regulating cleavage of type I proteins. Multiple mutations in PS1 are a major cause of familial early-onset Alzheimer's disease (AD). We and others recently identified PS-related families of proteins (IMPAS/PSH/signal peptide peptidases (SPP)). The functions of these proteins are yet to be determined. We found that intramembrane protease-associated or intramembrane protease aspartic protein Impas 1 (IMP1)/SPP induces intramembranous cleavage of PS1 holoprotein in cultured cells coexpressing these proteins. Mutations in evolutionary invariant sites in hIMP1 or specific gamma-secretase inhibitors abolish the hIMP1-mediated endoproteolysis of PS1. In contrast, neither AD-like mutations in hIMP1 nor in PS1 substrate abridge the PS1 cleavage. The data suggest that IMP1 is a bi-aspartic polytopic protease capable of cleaving transmembrane precursor proteins. These data, to our knowledge, are a first observation that a multipass transmembrane protein or the integral protease per se may be a primary substrate for an intramembranous proteolysis.  相似文献   

20.
Gamma-secretase is one of the critical enzymes required for the generation of amyloid-beta peptides from the beta-amyloid precursor protein. Because amyloid-beta peptides are generally accepted to play a key role in Alzheimer disease, gamma-secretase inhibition holds the promise for a disease-modifying therapy for this neurodegenerative condition. Although recent progress has enhanced the understanding of the biology and composition of the gamma-secretase enzyme complex, less information is available on the actual interaction of various inhibitor classes with the enzyme. Here we show that the two principal classes of inhibitor described in the scientific and patent literature, aspartyl protease transition state analogue and small molecule non-transition state inhibitors, display fundamental differences in the way they interact with the enzyme. Taking advantage of a gamma-secretase enzyme overexpressing cellular system and different radiolabeled gamma-secretase inhibitors, we observed that the maximal binding of non-transition state gamma-secretase inhibitors accounts only for half the number of catalytic sites of the recombinant enzyme complex. This characteristic stoichiometry can be best accommodated with a model whereby the non-transition state inhibitors bind to a unique site at the interface of a dimeric enzyme. Subsequent competition studies confirm that this site appears to be targeted by the main classes of small molecule gamma-secretase inhibitor. In contrast, the non-steroidal anti-inflammatory drug gamma-secretase modulator sulindac sulfide displayed noncompetitive antagonism for all types of inhibitor. This finding suggests that non-steroidal anti-inflammatory drug-type gamma-secretase modulators target an alternative site on the enzyme, thereby changing the conformation of the binding sites for gamma-secretase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号