首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formin-1 is the founding member of a family of genes of emerging biological and medical importance that share specific domains of homology, allowing them to be classified together as the formin homology proteins. Although deficiency mutations in formin-1 lead to profound developmental defects in limb and kidney formation, similar deficiency mutations in more distantly related members of this family (diaphanous and cappuccino in Drosophila and BNI1 in yeast) have ostensibly unrelated phenotypes. Here we describe murine and human formin-2 (Fmn2), a gene which bears a high degree of similarity to formin-1 and cappuccino. The mouse gene, which encodes a putative 1567-amino-acid open reading frame and maps to mouse Chromosome 1, is expressed almost exclusively in the developing and mature central nervous system. Expression begins at embryonic day 9. 5 in the developing spinal cord and brain structures and continues in neonatal and adult brain structures including the olfactory bulb, cortex, thalamus, hypothalamus, hippocampus and cerebellum. Human formin-2 has a similar expression pattern.  相似文献   

2.
In this study, we describe the identification and in vitro functional activity of a novel multiple domain complement regulatory protein discovered based on its homology to short consensus repeat (SCR)-containing proteins of the regulators of complement activation (RCA) gene family. The rat cDNA encodes a predicted 388-kDa protein consisting of 14 N-terminal CUB domains that are separated from each other by a SCR followed by 15 tandem SCR domains, a transmembrane domain, and a short cytoplasmic tail. This protein is the homolog of the human protein of unknown function called the CUB and sushi multiple domains 1 (CSMD1) protein. A cloning strategy that incorporates the two C-terminal CUB-SCR domains and 12 of the tandem SCR repeats was used to produce a soluble rat CSMD1 protein. This protein blocked classical complement pathway activation in a comparable fashion with rat Crry but did not block alternative pathway activation. Analysis of CSMD1 mRNA expression by in situ hybridization and immunolabeling of neurons indicates that the primary sites of synthesis are the developing CNS and epithelial tissues. Of particular significance is the enrichment of CSMD1 in the nerve growth cone, the amoeboid-leading edge of the growing neuron. These results suggest that CSMD1 may be an important regulator of complement activation and inflammation in the developing CNS, and that it may also play a role in the context of growth cone function.  相似文献   

3.
4.
HTm4 is a member of a newly defined family of human and murine proteins, the MS4 (membrane-spanning four) protein group, which has a distinctive four-transmembrane structure. MS4 protein functions include roles as cell surface signaling receptors and intracellular adapter proteins. We have previously demonstrated that HTm4 regulates the function of the KAP phosphatase, a key regulator of cell cycle progression. In humans, the expression of HTm4 is largely restricted to cells of the hematopoietic lineage, possibly reflecting a causal role for this molecule in differentiation/proliferation of hematopoietic lineage cells. In this study, we show that, like the human homologue, murine HTm4 is also predominantly a hematopoietic protein with distinctive expression patterns in developing murine embryos and in adult animals. In addition, we observed that murine HTm4 is highly expressed in the developing and adult murine nervous system, suggesting a previously unrecognized role in central and peripheral nervous system development.JLK and XY contributed equally to this work  相似文献   

5.
Down-regulated in renal cell carcinoma 1 (DRR1) is mapped at 3p21.1, and is a candidate tumor suppressor gene. However, its biological roles have yet to be elucidated. Here, we developed polyclonal antibodies against DRR1 protein, and examined its expression during embryogenesis and carcinogenesis. The DRR1 protein was preferentially expressed in axonal projections of the central and peripheral nervous system of mice during embryonic days 10.5-16.5. Consistent with this expression pattern, the protein was detected in the neurites of primary cultured cortical neurons of rats at embryonic day 18.5. Survival of these cells was significantly inhibited by RNAi-induced downregulation of DRR1 expression. DRR1 was poorly expressed in established cancer cell lines, including neuroblastoma cells, whereas strong expression was observed in normal cells. A neuroblastoma model, MYCN transgenic mice, revealed that DRR1 protein was expressed in the celiac ganglion 2 weeks after birth when neuroblast hyperplasia was also observed; however, there was no longer any expression of DRR1 protein in tumors originating from the ganglion 8 weeks after birth. Together, our data indicate that DRR1 protein is expressed in normal cells, particularly in the nervous system during embryogenesis, is involved in neuronal cell survival, and is downregulated during neuroblastoma carcinogenesis.  相似文献   

6.
The secreted frizzled-related proteins (Sfrp) are a family of soluble proteins with diverse biological functions having the capacity to bind Wnt ligands, to modulate Wnt signalling, and to signal directly via the Wnt receptor, Frizzled. In an enhancer trap screen for embryonic expression in zebrafish we identified an sfrp1 gene. Previous studies suggest an important role for sfrp1 in eye development, however, no data have been reported using the zebrafish model. In this paper, we describe duplicate sfrp1 genes in zebrafish and present a detailed analysis of the expression profile of both genes. Whole mount in situ hybridisation analyses of sfrp1a during embryonic and larval development revealed a dynamic expression profile, including: the central nervous system, where sfrp1a was regionally expressed throughout the brain and developing eye; the posterior gut, from the time of endodermal cell condensation; the lateral line, where sfrp1a was expressed in the migrating primordia and interneuromast cells that give rise to the sensory organs. Other sites included the blastoderm, segmenting mesoderm, olfactory placode, developing ear, pronephros and fin-bud. We have also analysed sfrp1b expression during embryonic development. Surprisingly this gene exhibited a divergent expression profile being limited to the yolk syncytium under the elongating tail-bud, which later covered the distal yolk extension, and transiently in the tail-bud mesenchyme. Overall, our studies provide a basis for future analyses of these developmentally important factors using the zebrafish model.  相似文献   

7.
The secreted frizzled-related proteins (Sfrp) are a family of soluble proteins with diverse biological functions having the capacity to bind Wnt ligands, to modulate Wnt signalling, and to signal directly via the Wnt receptor, Frizzled. In an enhancer trap screen for embryonic expression in zebrafish we identified an sfrp1 gene. Previous studies suggest an important role for sfrp1 in eye development, however, no data have been reported using the zebrafish model. In this paper, we describe duplicate sfrp1 genes in zebrafish and present a detailed analysis of the expression profile of both genes. Whole mount in situ hybridisation analyses of sfrp1a during embryonic and larval development revealed a dynamic expression profile, including: the central nervous system, where sfrp1a was regionally expressed throughout the brain and developing eye; the posterior gut, from the time of endodermal cell condensation; the lateral line, where sfrp1a was expressed in the migrating primordia and interneuromast cells that give rise to the sensory organs. Other sites included the blastoderm, segmenting mesoderm, olfactory placode, developing ear, pronephros and fin-bud. We have also analysed sfrp1b expression during embryonic development. Surprisingly this gene exhibited a divergent expression profile being limited to the yolk syncytium under the elongating tail-bud, which later covered the distal yolk extension, and transiently in the tail-bud mesenchyme. Overall, our studies provide a basis for future analyses of these developmentally important factors using the zebrafish model.  相似文献   

8.
We describe the identification and detailed expression pattern of a second Drosophila Sox gene, SoxNeuro (SoxN), highly related to mammalian group B Sox1, 2, 3 genes. SoxN is expressed in a highly dynamic pattern during embyogenesis, being associated with the development of the central nervous system (CNS), from the early steps onwards. We present strong evidence that the early SoxN neuroectoderm expression is controlled by the zygotic dorso-ventral patterning genes (dpp, sog, brk, twi).  相似文献   

9.
We present an initial characterization of the murine Gsh-4 gene which is shown to encode a LIM-type homeodomain. Genes in this category are known to control late developmental cell-type specification events in simpler organisms. Whole mount and serial section in situ hybridizations show transient Gsh-4 expression in ventrolateral regions of the developing neural tube and hindbrain. Mice homozygous for a targeted mutation in Gsh-4 suffer early postnatal death resulting from immature lungs which do not inflate. Prenatal administration of progesterone and glucocorticoid, to extend gestational term and accelerate maturation, resulted in lung inflation at birth. Nevertheless, the hormonally treated mutants generally failed to survive beyond an hour after birth, due to ineffective breathing efforts. It is concluded that Gsh-4 plays a critical role in the development of respiratory control mechanisms and in the normal growth and maturation of the lung.  相似文献   

10.
Schistosomes have a well developed nervous system that coordinates virtually every activity of the parasite and therefore is considered to be a promising target for chemotherapeutic intervention. Neurotransmitter receptors, in particular those involved in neuromuscular control, are proven drug targets in other helminths but very few of these receptors have been identified in schistosomes and little is known about their roles in the biology of the worm. Here we describe a novel Schistosoma mansoni G protein-coupled receptor (named SmGPR-3) that was cloned, expressed heterologously and shown to be activated by dopamine, a well established neurotransmitter of the schistosome nervous system. SmGPR-3 belongs to a new clade of "orphan" amine-like receptors that exist in schistosomes but not the mammalian host. Further analysis of the recombinant protein showed that SmGPR-3 can also be activated by other catecholamines, including the dopamine metabolite, epinine, and it has an unusual antagonist profile when compared to mammalian receptors. Confocal immunofluorescence experiments using a specific peptide antibody showed that SmGPR-3 is abundantly expressed in the nervous system of schistosomes, particularly in the main nerve cords and the peripheral innervation of the body wall muscles. In addition, we show that dopamine, epinine and other dopaminergic agents have strong effects on the motility of larval schistosomes in culture. Together, the results suggest that SmGPR-3 is an important neuronal receptor and is probably involved in the control of motor activity in schistosomes. We have conducted a first analysis of the structure of SmGPR-3 by means of homology modeling and virtual ligand-docking simulations. This investigation has identified potentially important differences between SmGPR-3 and host dopamine receptors that could be exploited to develop new, parasite-selective anti-schistosomal drugs.  相似文献   

11.
12.
We have identified chick frizzled (Fz)-10, encoding a Wnt receptor, and examined the expression pattern during embryogenesis. Fz-10 is expressed in the region posterior to the Hensen's node at stage 6. Fz-10 expression is detected in the dorsal domain of the neural tube and the central nervous system of the developing embryo. In the developing limb, Fz-10 expression starts at stage 18 in the posterior-dorsal region of the distal mesenchyme, and gradually expands to the anterior-distal region. Fz-10 is also expressed in the feather bud and branchial arch. Implantation of Sonic hedgehog (Shh)-expressing cells into the anterior margin of the limb bud resulted in the induction of Fz-10 expression in anterior-dorsal mesenchyme.  相似文献   

13.
14.
15.
16.
Receptors and various molecules in neurons are localized at precise locations to perform their respective functions, especially in synaptic sites. Among synaptic molecules, PDZ domain proteins play major roles in scaffolding and anchoring membrane proteins for efficient synaptic transmission. In the present study, we isolated CIP98, a novel protein (98 kDa) consisting of three PDZ domains and a proline-rich region, which is widely expressed in the central nervous system. In situ hybridization and immunohistochemical staining patterns demonstrate that CIP98 is expressed strongly in certain types of neurons, i.e. pyramidal cells in layers III-V of the cerebral cortex, projecting neurons in the thalamus and interneurons in the cerebellum. The results of immunocytochemical staining and electron microscopy revealed that CIP98 is localized both in dendrites and axons. Interestingly, CIP98 interacts with CASK (calmodulin-dependent serine kinase), a member of the membrane-associated guanylate kinase (MAGUK) family that plays important roles in the molecular organization of proteins at synapses. CIP98 was shown to co-localize with CASK along the dendritic processes of neurons. In view of its direct association with CASK, CIP98 may be involved in the formation of CASK scaffolding proteins complex to facilitate synaptic transmission in the CNS.  相似文献   

17.
18.
Muto E  Tabata Y  Taneda T  Aoki Y  Muto A  Arai K  Watanabe S 《Biochimie》2004,86(8):523-531
We isolated Veph, a novel gene encoding a pleckstrin homology (PH) domain-containing protein from a mouse. Veph was strongly expressed in the embryonic brain, and its expression level gradually decreased in later stages. In situ hybridization analysis of sectioned embryo brains revealed that Veph was expressed exclusively in the ventricular zone. We then isolated a zebrafish orthologue of Veph (zVeph). As observed in the mouse gene, zVeph was expressed in the ventricular zone of developing brain and spinal cord. Blockage of zVeph expression by injection of zVeph-specific morpholino antisense oligo into zebrafish fertilized eggs resulted in a defect in the midbrain-hindbrain boundary and otic vesicle formation, suggesting the important function of zVeph in central nervous system (CNS) development. On the other hand, homozygous knockout mice of Veph showed no significant defect in the CNS, pointing to possible different functions of Veph between the zebrafish and mouse.  相似文献   

19.
20.
We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary. Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号