首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In striated muscle the force generating acto-myosin interaction is sterically regulated by the thin filament proteins tropomyosin and troponin (Tn), with the position of tropomyosin modulated by calcium binding to troponin. Troponin itself consists of three subunits, TnI, TnC, and TnT, widely characterized as being responsible for separate aspects of the regulatory process. TnI, the inhibitory unit is released from actin upon calcium binding to TnC, while TnT performs a structural role forming a globular head region with the regulatory TnI- TnC complex with a tail anchoring it within the thin filament. We have examined the properties of TnT and the TnT(1) tail fragment (residues 1-158) upon reconstituted actin-tropomyosin filaments. Their regulatory effects have been characterized in both myosin S1 ATPase and S1 kinetic and equilibrium binding experiments. We show that both inhibit the actin-tropomyosin-activated S1 ATPase with TnT(1) producing a greater inhibitory effect. The S1 binding data show that this inhibition is not caused by the formation of the blocked B-state but by significant stabilization of the closed C-state with a 10-fold reduction in the C- to M-state equilibrium, K(T), for TnT(1). This suggests TnT has a modulatory as well as structural role, providing an explanation for its large number of alternative isoforms.  相似文献   

2.
Bacterially expressed alpha-tropomyosin lacks the amino-terminal acetylation present in muscle tropomyosin and binds poorly to actin (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Using a linear lattice model, we determined the affinity (Ko) of unacetylated tropomyosin or troponin-unacetylated tropomyosin for an isolated site on the actin filament and the fold increase in affinity (y) when binding is to an adjacent site. The absence of tropomyosin acetylation decreased Ko 2 orders of magnitude in the absence of troponin. Tropomyosin acetylation also enhanced troponin-tropomyosin binding to actin, not by increasing cooperativity (y), but rather by increasing Ko. These results suggest that the amino-terminal region of tropomyosin is a crucial actin binding site. Troponin promoted unacetylated tropomyosin binding to actin, increasing Ko more than 1,000-fold. Troponin70-259, which lacks the troponin T peptide (1-69) spanning the overlap between adjacent tropomyosins, behaved similarly to intact troponin. Cooperative interactions between adjacent troponin-tropomyosin complexes remained strong despite the use of a nonpolymerizable tropomyosin and a troponin unable to bridge neighboring tropomyosins physically. The Ko for troponin70-259-unacetylated tropomyosin was 500-fold greater than for troponin159-259-unacetylated tropomyosin, indicating that troponin T residues 70-158 are critical for anchoring troponin-tropomyosin to F-actin. The mechanism of cooperative thin filament assembly is discussed.  相似文献   

3.
In cardiac and skeletal muscles tropomyosin binds to the actin outer domain in the absence of Ca(2+), and in this position tropomyosin inhibits muscle contraction by interfering sterically with myosin-actin binding. The globular domain of troponin is believed to produce this B-state of the thin filament (Lehman, W., Hatch, V., Korman, V. L., Rosol, M., Thomas, L. T., Maytum, R., Geeves, M. A., Van Eyk, J. E., Tobacman, L. S., and Craig, R. (2000) J. Mol. Biol. 302, 593-606) via troponin I-actin interactions that constrain the tropomyosin. The present study shows that the B-state can be promoted independently by the elongated tail region of troponin (the NH(2) terminus (TnT-(1-153)) of cardiac troponin T). In the absence of the troponin globular domain, TnT-(1-153) markedly inhibited both myosin S1-actin-tropomyosin MgATPase activity and (at low S1 concentrations) myosin S1-ADP binding to the thin filament. Similarly, TnT-(1-153) increased the concentration of heavy meromyosin required to support in vitro sliding of thin filaments. Electron microscopy and three-dimensional reconstruction of thin filaments containing TnT-(1-153) and either cardiac or skeletal muscle tropomyosin showed that tropomyosin was in the B-state in the complete absence of troponin I. All of these results indicate that portions of the troponin tail domain, and not only troponin I, contribute to the positioning of tropomyosin on the actin outer domain, thereby inhibiting muscle contraction in the absence of Ca(2+).  相似文献   

4.
Troponin contains a globular Ca(2+)-binding domain and an elongated tail domain composed of the N terminus of subunit troponin T (TnT). The tail domain anchors troponin to tropomyosin and actin, modulates myosin function, and is a site of cardiomyopathy-inducing mutations. Critical interactions between tropomyosin and troponin are proposed to depend on tail domain residues 112-136, which are highly conserved across phyla. Most cardiomyopathy mutations in TnT flank this region. Three such mutations were examined and had contrasting effects on peptide TnT-(1-156), promoting folding and thermal stability assessed by circular dichroism (F110I) or weakening folding and stability (T104V and to a small extent R92Q). Folding of both TnT-(1-156) and whole troponin was promoted by replacing bovine TnT Thr-104 with human TnT Ala-104, further indicating the importance of this cardiomyopathy site residue for protein folding. Mutation F110I markedly stabilized the troponin tail but weakened binding of holo-troponin to actin-tropomyosin 8-fold, suggesting that loss of flexibility impairs troponin tail function. The effect of the F110I mutation on troponin-tropomyosin binding to actin was much less, indicating this flexibility is particularly important for the interactions of troponin with tropomyosin. We suggest that most cardiomyopathic mutations in the troponin tail alter muscle function indirectly, by perturbing interactions between troponin and tropomyosin requisite for the complex effects of these proteins on myosin.  相似文献   

5.
Striated muscle thin filaments contain many troponin molecules, which contact each other indirectly via tropomyosin and actin. Such allosteric interactions between troponin molecules may be responsible for cooperative Ca2+ binding to the regulatory sites of the cardiac thin filament (Tobacman, L. S., and Sawyer, D. S. (1990) J. Biol. Chem. 265, 931-939). To test whether thin filament-bound troponin molecules interact, we studied the competitive binding of troponin and troponin T-troponin I (an inhibitory complex lacking the Ca2+ binding subunit troponin C) to actin-tropomyosin. The relative affinities of these two forms of troponin for the thin filament depended upon their relative concentrations. Under conditions where total binding was saturated, each form binds with greater apparent affinity to sites that have similar neighbors. A theoretical model for competitive binding of two ligands to interacting sites on a linear lattice was developed and fit to the data. Surprisingly, energetically unfavorable interactions occurred between adjacent troponin and troponin T-troponin I molecules not only in the presence of Ca2+, but also in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid and/or myosin subfragment 1. Removal of Ca2+ strengthened the affinity of troponin for the thin filament less than 50%. These results suggest that, even in the absence of myosin, long range allosteric interactions occur between troponin molecules. The detailed involvement of tropomyosin and actin in these interactions remains to be established.  相似文献   

6.
Thin filament-mediated regulation of striated muscle contraction involves conformational switching among a few quaternary structures, with transitions induced by binding of Ca(2+) and myosin. We establish and exploit Saccharomyces cerevisiae actin as a model system to investigate this process. Ca(2+)-sensitive troponin-tropomyosin binding affinities for wild type yeast actin are seen to closely resemble those for muscle actin, and these hybrid thin filaments produce Ca(2+)-sensitive regulation of the myosin S-1 MgATPase rate. Yeast actin filament inner domain mutant K315A/E316A depresses Ca(2+) activation of the MgATPase rate, producing a 4-fold weakening of the apparent Ca(2+) affinity and a 50% decrease in the MgATPase rate at saturating Ca(2+) concentration. Observed destabilization of troponin-tropomyosin binding to actin in the presence of Ca(2+), a 1.4-fold effect, provides a partial explanation. Despite the decrease in apparent MgATPase Ca(2+) affinity, there was no detectable change in the true Ca(2+) affinity of the thin filament, measured using fluorophore-labeled troponin. Another inner domain mutant, E311A/R312A, decreased the MgATPase rate but did not change the apparent Ca(2+) affinity. These results suggest that charged residues on the surface of the actin inner domain are important in Ca(2+)- and myosin-induced thin filament activation.  相似文献   

7.
We have compared the in vitro regulatory properties of recombinant human cardiac troponin reconstituted using wild type troponin T with troponin containing the DeltaLys-210 troponin T mutant that causes dilated cardiomyopathy (DCM) and the R92Q troponin T known to cause hypertrophic cardiomyopathy (HCM). Troponin containing DeltaLys-210 troponin T inhibited actin-tropomyosin-activated myosin subfragment-1 ATPase activity to the same extent as wild type at pCa8.5 (>80%) but produced substantially less enhancement of ATPase at pCa4.5. The Ca(2+) sensitivity of ATPase activation was increased (DeltapCa(50) = +0.2 pCa units) and cooperativity of Ca(2+) activation was virtually abolished. Equimolar mixtures of wild type and DeltaLys-210 troponin T gave a lower Ca(2+) sensitivity than with wild type, while maintaining the diminished ATPase activation at pCa4.5 observed with 100% mutant. In contrast, R92Q troponin gave reduced inhibition at pCa8.5 but greater activation than wild type at pCa4.5; Ca(2+) sensitivity was increased but there was no change in cooperativity. In vitro motility assay of reconstituted thin filaments confirmed the ATPase results and moreover indicated that the predominant effect of the DeltaLys-210 mutation was a reduced sliding speed. The functional consequences of this DCM mutation are qualitatively different from the R92Q or any other studied HCM troponin T mutation, suggesting that DCM and HCM may be triggered by distinct primary stimuli.  相似文献   

8.
The apparent rate of troponin (Tn) dissociation from myofibrils has been used as a method to study thin filament regulation in striated muscle. The rate is dependent upon calcium and strong crossbridges and supports the three-state model for thin filament regulation. The dissociation rate of Tn is extremely low so it is not intuitively clear that such a slow process would probe thin filament regulation. We have investigated this issue by developing a simple kinetic model to explain the Tn dissociation rate measured by labeled Tn exchange in the myofibrils. Tn is composed of three interacting subunits, TnC, TnI and TnT. In our model, TnI’s regulatory domain switches from actin-tropomyosin to TnC followed by TnT dissociation from actin-tropomyosin. This TnI regulatory domain switching is linked to the transition of the thin filament from the blocked state to the closed state. It is calcium dependent and several orders of magnitude faster than TnT dissociation from actin-tropomyosin. By integrating the dimensionless rate equations of this model, we have computed the time course of each of the various components. In our numerical simulations, the rate constant for TnI switching from actin-tropomyosin to TnC was varied from 10 s?1 to 1000 s?1 to simulate the low calcium, blocked state to high calcium, closed state. The computed progress curves for labeled Tn exchange into the myofibrils and the derived intensity ratio between the non-overlap and overlap regions well explains the intensity ratio progress curves observed experimentally. These numerical simulations and experimental observations reveal that the apparent rate of Tn dissociation probes the blocked state to closed state equilibrium of the myofibrillar thin filament.  相似文献   

9.
Tropomodulin is a pointed end capping protein for tropomyosin-coated actin filaments that is hypothesized to play a role in regulating the precise lengths of striated muscle thin filaments (Fowler, V. M., M. A. Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120:411-420; Weber, A., C. C. Pennise, G. G. Babcock, and V. M. Fowler. 1994, J. Cell Biol. 127:1627-1635). To gain insight into the mechanisms of thin filament assembly and the role of tropomodulin therein, we have characterized the temporal appearance, biosynthesis and mechanisms of assembly of tropomodulin onto the pointed ends of thin filaments during the formation of striated myofibrils in primary embryonic chick cardiomyocyte cultures. Our results demonstrate that tropomodulin is not assembled coordinately with other thin filament proteins. Double immunofluorescence staining and ultrastructural immunolocalization demonstrate that tropomodulin is incorporated in its characteristic sarcomeric location at the pointed ends of the thin filaments after the thin filaments have become organized into periodic I bands. In fact, tropomodulin assembles later than all other well characterized myofibrillar proteins studied including: actin, tropomyosin, alpha-actinin, titin, myosin and C-protein. Nevertheless, at steady state, a significant proportion (approximately 39%) of tropomodulin is present in a soluble pool throughout myofibril assembly. Thus, the absence of tropomodulin in some striated myofibrils is not due to limiting quantities of the protein. In addition, kinetic data obtained from [35S]methionine pulse-chase experiments indicate that tropomodulin assembles more slowly into myofibrils than does tropomyosin. This observation, together with results obtained using a novel permeabilized cell model for thin filament assembly, indicate that tropomodulin assembly is dependent on the prior association of tropomyosin with actin filaments. We conclude that tropomodulin is a late marker for the assembly of striated myofibrils in cardiomyocytes; its assembly appears to be linked to their maturity. We propose that tropomodulin is involved in maintaining and stabilizing the final lengths of thin filaments after they are assembled.  相似文献   

10.
The regulatory function of cardiac troponin I (cTnI) involves three important contiguous regions within its C-domain: the inhibitory region (IR), the regulatory region (RR), and the mobile domain (MD). Within these regions, the dynamics of regional structure and kinetics of transitions in dynamic state are believed to facilitate regulatory signaling. This study was designed to use fluorescence anisotropy techniques to acquire steady-state and kinetic information on the dynamic state of the C-domain of cTnI in the reconstituted thin filament. A series of single cysteine cTnI mutants was generated, labeled with the fluorophore tetramethylrhodamine, and subjected to various anisotropy experiments at the thin filament level. The structure of the IR was found to be less dynamic than that of the RR and the MD, and Ca(2+) binding induced minimal changes in IR dynamics: the flexibility of the RR decreased, whereas the MD became more flexible. Anisotropy stopped-flow experiments showed that the kinetics describing the transition of the MD and RR from the Ca(2+)-bound to the Ca(2+)-free dynamic states were significantly faster (53.2-116.8 s(-1)) than that of the IR (14.1 s(-1)). Our results support the fly casting mechanism, implying that an unstructured MD with rapid dynamics and kinetics plays a critical role to initiate relaxation upon Ca(2+) dissociation by rapidly interacting with actin to promote the dissociation of the RR from the N-domain of cTnC. In contrast, the IR responds to Ca(2+) signals with slow structural dynamics and transition kinetics. The collective findings suggested a fourth state of activation.  相似文献   

11.
Periodic distribution of troponin along the thin filament   总被引:8,自引:0,他引:8  
  相似文献   

12.
Localization of troponin in thin filament and tropomyosin paracrystal   总被引:1,自引:0,他引:1  
  相似文献   

13.
Contraction and relaxation of cardiac muscle are regulated by the inhibitory and regulatory regions of troponin I (cTnI). Our previous FRET studies showed that the inhibitory region of cTnI in isolated troponin experiences a structural transition from a beta-turn/coil motif to an extended conformation upon Ca(2+) activation. During the relaxation process, the kinetics of the reversal of this conformation is coupled to the closing of the Ca(2+)-induced open conformation of the N-domain of troponin C (cTnC) and an interaction between cTnC and cTnI in their interface. We have since extended the structural kinetic study of the inhibitory region to fully regulated thin filament. Single-tryptophan and single-cysteine mutant cTnI(L129W/S151C) was labeled with 1,5-IAEDANS at Cys151, and the tryptophan-AEDANS pair served as a donor-acceptor pair. Labeled cTnI mutant was used to prepare regulated thin filaments. Ca(2+)-induced conformational changes in the segment of Trp129-Cys151 of cTnI were monitored by FRET sensitized acceptor (AEDANS) emission in Ca(2+) titration and stopped-flow measurements. Control experiments suggested energy transfer from endogenous tryptophan residues of actin and myosin S1 to AEDANS attached to Cys151 of cTnI was very small and Ca(2+) independent. The present results show that the rate of Ca(2+)-induced structural transition and Ca(2+) sensitivity of the inhibitory region of cTnI were modified by (1) thin filament formation, (2) the presence of strongly bound S1, and (3) PKA phosphorylation of the N-terminus of cTnI. Ca(2+) sensitivity was not significantly changed by the presence of cTm and actin. However, the cTn-cTm interaction decreased the cooperativity and kinetics of the structural transition within cTnI, while actin filaments elicited opposite effects. The strongly bound S1 significantly increased the Ca(2+) sensitivity and slowed down the kinetics of structural transition. In contrast, PKA phosphorylation of cTnI decreased the Ca(2+) sensitivity and accelerated the structural transition rate of the inhibitory region of cTnI on thin filaments. These results support the idea of a feedback mechanism by strong cross-bridge interaction with actin and provide insights on the molecular basis for the fine tuning of cardiac function by beta-adrenergic stimulation.  相似文献   

14.
Striated muscle thin filaments adopt different quaternary structures, depending upon calcium binding to troponin and myosin binding to actin. Modification of actin subdomain 2 alters troponin-tropomyosin-mediated regulation, suggesting that this region of actin may contain important protein-protein interaction sites. We used yeast actin mutant D56A/E57A to examine this issue. The mutation increased the affinity of tropomyosin for actin 3-fold. The addition of Ca(2+) to mutant actin filaments containing troponin-tropomyosin produced little increase in the thin filament-myosin S1 MgATPase rate. Despite this, three-dimensional reconstruction of electron microscope images of filaments in the presence of troponin and Ca(2+) showed tropomyosin to be in a position similar to that found for muscle actin filaments, where most of the myosin binding site is exposed. Troponin-tropomyosin bound with comparable affinity to mutant and wild type actin in the absence and presence of calcium, and in the presence of myosin S1, tropomyosin bound very tightly to both types of actin. The mutation decreased actin-myosin S1 affinity 13-fold in the presence of troponin-tropomyosin and 2.6-fold in the absence of the regulatory proteins. The results suggest the importance of negatively charged actin subdomain 2 residues 56 and 57 for myosin binding to actin, for tropomyosin-actin interactions, and for regulatory conformational changes in the actin-troponin-tropomyosin complex.  相似文献   

15.
Troponin C (TnC) is the Ca(2+)-sensing subunit of troponin responsible for initiating the cascade of events resulting in contraction of striated muscle. This protein can be readily extracted from myofibrils with low-ionic-strength EDTA-containing buffers. The properties of TnC extraction have not been characterized at the structural level, nor have the interactions of TnC with the native myofibrillar thin filament been studied. To address these issues, fluorescein-labeled TnC, in conjunction with high-resolution digital fluorescence microscopy, was used to characterize TnC binding to myofibrils and to determine the randomness of TnC extraction. Fluorescein-5-maleimide TnC (F5M TnC) retained biological activity, as evidenced by reconstitution of Ca(2+)-dependent ATPase activity in extracted myofibrils and binding to TnI in a Ca(2+)-sensitive manner. The binding of F5M TnC to highly extracted myofibrils at low Ca2+ was restricted to the overlap region under rigor conditions, and the location of binding was not influenced by F5M TnC concentration. The addition of myosin subfragment 1 to occupy all actin sites resulted in F5M TnC being bound in both the overlap and nonoverlap regions. However, very little F5M TnC was bound to myofibrils under relaxing conditions. These results suggest that strong binding of myosin heads enhances TnC binding. At high Ca2+, the pattern of F5M TnC binding was concentration dependent: binding was restricted to the overlap region at low F5M TnC concentration, whereas the binding propagated into the nonoverlap region at higher levels. Analysis of fluorescence intensity showed the greatest binding of F5M TnC at high Ca2+ with S1, and these conditions were used to characterize partially TnC-extracted myofibrils. Comparison of partially extracted myofibrils showed that low levels of extraction were associated with greater F5M TnC being bound in the nonoverlap region than in the overlap region relative to higher levels of extraction. These results show that TnC extraction is not random along the length of the thin filament, but occurs more readily in the nonoverlap region. This observation, in conjunction with the influence of rigor heads on the pattern of F5M TnC binding, suggests that strong myosin binding to actin stabilizes TnC binding at low Ca2+.  相似文献   

16.
1. The localization of specific antiboidies against troponin components, i.e., troponin T(TN-T), troponin I(TN-I, and troponin C(TN-C), was studied by the use of an electrom microscope. 2. Every antibody was distributed along the thin filament with a period of 38 nm. 3. Staining with anti-TN-I or anti-TN-C formed narrow striations. The location of the first striation was 26 nm from the free end of the thin filament. 4. The width of individual striations formed by anti-TN-T was 14--20nm The H-band-side end of each striation coincided with the location of anti-TN-I or anti-TN-C.  相似文献   

17.
The N-terminal domain of cardiac troponin I (cTnI) comprising residues 33-80 and lacking the cardiac-specific amino terminus forms a stable binary complex with the C-terminal domain of cardiac troponin C (cTnC) comprising residues 81-161. We have utilized heteronuclear multidimensional NMR to assign the backbone and side-chain resonances of Ca2+-saturated cTnC(81-161) both free and bound to cTnI(33-80). No significant differences were observed between secondary structural elements determined for free and cTnI(33-80)-bound cTnC(81-161). We have determined solution structures of Ca2+-saturated cTnC(81-161) free and bound to cTnI(33-80). While the tertiary structure of cTnC(81-161) is qualitatively similar to that observed free in solution, the binding of cTnI(33-80) results mainly in an opening of the structure and movement of the loop region between helices F and G. Together, these movements provide the binding site for the N-terminal domain of cTnI. The putative binding site for cTnI(33-80) was determined by mapping amide proton and nitrogen chemical shift changes, induced by the binding of cTnI(33-80), onto the C-terminal cTnC structure. The binding interface for cTnI(33-80), as suggested from chemical shift changes, involves predominantly hydrophobic interactions located in the expanded hydrophobic pocket. The largest chemical shift changes were observed in the loop region connecting helices F and G. Inspection of available TnC sequences reveals that these residues are highly conserved, suggesting a common binding motif for the Ca2+/Mg2+-dependent interaction site in the TnC/TnI complex.  相似文献   

18.
Understanding the effects of thin and thick filament proteins on the kinetics of Ca(2+) exchange with cardiac troponin C is essential to elucidating the Ca(2+)-dependent mechanisms controlling cardiac muscle contraction and relaxation. Unlike labeling of the endogenous Cys-84, labeling of cardiac troponin C at a novel engineered Cys-53 with 2-(4'-iodoacetamidoanilo)napthalene-6-sulfonic acid allowed us to accurately measure the rate of calcium dissociation from the regulatory domain of troponin C upon incorporation into the troponin complex. Neither tropomyosin nor actin alone affected the Ca(2+) binding properties of the troponin complex. However, addition of actin-tropomyosin to the troponin complex decreased the Ca(2+) sensitivity ( approximately 7.4-fold) and accelerated the rate of Ca(2+) dissociation from the regulatory domain of troponin C ( approximately 2.5-fold). Subsequent addition of myosin S1 to the reconstituted thin filaments (actin-tropomyosin-troponin) increased the Ca(2+) sensitivity ( approximately 6.2-fold) and decreased the rate of Ca(2+) dissociation from the regulatory domain of troponin C ( approximately 8.1-fold), which was completely reversed by ATP. Consistent with physiological data, replacement of cardiac troponin I with slow skeletal troponin I led to higher Ca(2+) sensitivities and slower Ca(2+) dissociation rates from troponin C in all the systems studied. Thus, both thin and thick filament proteins influence the ability of cardiac troponin C to sense and respond to Ca(2+). These results imply that both cross-bridge kinetics and Ca(2+) dissociation from troponin C work together to modulate the rate of cardiac muscle relaxation.  相似文献   

19.
A cardiac troponin T epitope conserved across phyla.   总被引:9,自引:0,他引:9  
Troponin T is a thin filament protein that is important in regulating striated muscle contraction. We have raised a monoclonal antibody against rabbit cardiac troponin T, monoclonal (mAb) 13-11, that recognizes its epitope in cardiac troponin T isoforms from fish, bird, and mammal but not from frog. The number of these isoforms expressed in cardiac muscle varies among species and during development. Cardiac troponin T isoforms were not found in adult skeletal muscle, while they were expressed transiently in immature skeletal muscle. We have mapped the epitope recognized by mAb 13-11 using rabbit cardiac troponin T isoforms. Analysis of stepwise cyanogen bromide digestion, which allowed association of the epitope to regions spanning methionine residues, coupled with immunoactivity of synthetic peptides, corresponding to sequences containing methionine residues, indicated that mAb 13-11 recognized its epitope in a 17-residue sequence containing the methionine at position 68, SKPKPRPFMPNLVPPKI. Comparison of skeletal and cardiac troponin T sequences suggested that the epitope was contained within the sequence FMPNLVPPKI. Synthetic peptides PFMPNLVPPKI and FMPNLVPPKI were recognized by mAb 13-11 on slot-blots. Enzyme-linked immunosorbent assay demonstrated mAb 13-11 recognized, in order of descending affinity, the 17-, 11-, and 10-residue sequence. Preabsorption of mAb 13-11 with each of these sequences blocked the recognition of the 17-residue peptide by mAb 13-11. The domain, PFMPNLVPPKI is encoded by the 5' region of the cardiac gene exon 10 and is present in hearts across a broad range of phyla. These findings suggest that this cardiac troponin T-specific sequence confers onto myofilaments structural and functional properties unique to the heart.  相似文献   

20.
Calcium activation of fast striated muscle results from an opening of the regulatory N-terminal domain of fast skeletal troponin C (fsTnC), and a substantial exposure of a hydrophobic patch, essential for Ca(2+)-dependent interaction with fast skeletal troponin I (fsTnI). This interaction is obligatory to relieve the inhibition of strong, force-generating actin-myosin interactions. We have determined intersite distances in the N-terminal domain of cardiac TnC (cTnC) by fluorescence resonance energy transfer measurements and found negligible increases in these distances when the single regulatory site is saturated with Ca(2+). However, in the presence of bound cardiac TnI (cTnI), activator Ca(2+) induces significant increases in the distances and a substantial opening of the N-domain. This open conformation within the cTnC.cTnI complex has properties favorable for the Ca(2+)-induced interaction with an additional segment of cTnI. Thus, the binding of cTnI to cTnC is a prerequisite to achieve a Ca(2+)-induced open N-domain similar to that previously observed in fsTnC with no bound fsTnI. This role of cardiac TnI has not been previously recognized. Our results also indicate that structural information derived from a single protein may not be sufficient for inference of a structure/function relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号