首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of 2' -beta-hydroxymethyl nucleosides 3-6 was accomplished, using stereoselective hydroxymethylation as a key step. Adenine nucleoside 3 showed potent anti-HCV activity, implying that 2' -beta-hydroxymethyl group has the appropriate electronic properties interfering with HCV polymerase.  相似文献   

2.
Based on the discovery of beta-D-2'-deoxy-2'-fluorocytidine as a potent anti-hepatitis C virus (HCV) agent, a series of beta-D- and L-2'-deoxy-2'-fluoroibonucleosides with modifications at 5 and/or 4 positions were synthesized and evaluated for their in vitro activity against HCV and bovine viral diarrhea virus (BVDV). The introduction of the 2'-fluoro group was achieved by either fluorination of 2,2'-anhydronucleosides with hydrogen fluoride-pyridine or potassium fluoride, or a fluorination of arabinonucleosides with DAST. Among the 27 analogues synthesized, only the 5-fluoro compounds, namely beta-D-2'-deoxy-2',5-difluorocytidine (5), had anti-HCV activity in the subgenomic HCV replicon cell line, and inhibitory activity against ribosomal RNA. As beta-D-N4-hydroxycytidine (NHC) had previously shown potent anti-HCV activity, the two functionalities of the N4-hydroxyl and the 2'-fluoro were combined into one molecule, yielding beta-D-2'-deoxy-2'-fluoro-N4-hydroxycytidine (12). However, this nucleoside showed neither anti-HCV activity nor toxicity. All the L-forms of the analogues were devoid of anti-HCV activity. None of the compounds showed anti-BVDV activity, suggesting that the BVDV system cannot reliably predict anti-HCV activity in vitro.  相似文献   

3.
Hepatitis C virus (HCV) NS5B RNA polymerase is crucial for replicating the HCV RNA genome and is an attractive target for developing anti-HCV drugs. A novel series of 2,3-diaryl-1,3-thiazolidin-4-one derivatives were evaluated for their ability to inhibit HCV NS5B. Of this series, compounds 4c, 5b, 5c and 6 emerged as more potent, displaying over 95% inhibition of NS5B RNA polymerase activity in vitro. The two most active compounds 4c and 5c exhibited an IC(50) of 31.9 microM and 32.2 microM, respectively, against HCV NS5B.  相似文献   

4.
Based on the discovery of β-D-2′-deoxy-2′-fluorocytidine as a potent anti-hepatitis C virus (HCV) agent, a series of β-D- and l-2′-deoxy-2′-fluororibonucleosides with modifications at 5 and/or 4 positions were synthesized and evaluated for their in vitro activity against HCV and bovine viral diarrhea virus (BVDV). The introduction of the 2′-fluoro group was achieved by either fluorination of 2,2′-anhydronucleosides with hydrogen fluoride-pyridine or potassium fluoride, or a fluorination of arabinonucleosides with DAST. Among the 27 analogues synthesized, only the 5-fluoro compounds, namely β-D-2′-deoxy-2′,5-difluorocytidine (5), had anti-HCV activity in the subgenomic HCV replicon cell line, and inhibitory activity against ribosomal RNA. As β-D-N4-hydroxycytidine (NHC) had previously shown potent anti-HCV activity, the two functionalities of the N4-hydroxyl and the 2′-fluoro were combined into one molecule, yielding β-D-2′-deoxy-2′-fluoro-N4-hydroxycytidine (12). However, this nucleoside showed neither anti-HCV activity nor toxicity. All the l-forms of the analogues were devoid of anti-HCV activity. None of the compounds showed anti-BVDV activity, suggesting that the BVDV system cannot reliably predict anti-HCV activity in vitro.  相似文献   

5.
Using our recently developed assay system for full-genome-length hepatitis C virus (HCV) RNA replication in human hepatoma-derived Li23 cells (ORL8), we identified 4-(1,1,1,3,3,3-hexafluoro-2-hydroxy-2-propyl)aniline analog 1a as a novel HCV inhibitor. Structural modifications of 1a provided a series of sulfonamides 7 with much more potent HCV RNA replication-inhibitory activity than ribavirin. Compound 7a showed an additive anti-HCV effect in combination with standard anti-HCV therapy (IFN-α plus ribavirin). Since 7a generated reactive oxygen species (ROS) in the ORL8 system and its anti-HCV activity was blocked by vitamin E, its anti-HCV activity may be mediated at least in part by ROS.  相似文献   

6.
Based on the discovery of (2'R)-d-2'-deoxy-2'-fluorocytidine as a potent anti-hepatitis C virus (HCV) agent, a series of d- and l-2'-deoxy-2'-fluororibonucleosides with modifications at 5- and/or 4-positions were synthesized and evaluated for their in vitro activity against HCV and bovine viral diarrhea virus (BVDV). The key step in the synthesis, the introduction of 2'-fluoro group, was achieved by either fluorination of 2,2'-anhydronucleosides with hydrogen fluoride-pyridine or potassium fluoride, or a fluorination of arabinonucleosides with DAST. Among the 27 analogues synthesized, only the 5-fluoro compound, namely (2'R)-d-2'-deoxy-2',5-difluorocytidine (13), demonstrated potent anti-HCV activity and toxicity to ribosomal RNA. The replacement of the 4-amino group with a thiol group resulted in the loss of activity, while the 4-methylthio substituted analogue (25) exhibited inhibition of ribosomal RNA. As N(4)-hydroxycytidine (NHC) had previously shown potent anti-HCV activity, we combined the two functionalities of the N(4)-hydroxyl and the 2'-fluoro into one molecule, resulting (2'R)-d-2'-deoxy-2'-fluoro-N(4)-hydroxycytidine (23). However, this nucleoside showed neither anti-HCV activity nor toxicity. All the l-forms of the analogues were devoid of anti-HCV activity. None of the compounds showed anti-BVDV activity, suggesting that the BVDV system cannot always predict anti-HCV activity.  相似文献   

7.
A series of diketo tetrazoles and diketo triazoles were designed and synthesized as bioisosteres of α,γ-diketo acid, the active site inhibitor of HCV (Hepatitis C virus) polymerase NS5B. Among the synthesized compounds, 4-(4-fluorobenzyloxy)phenyl diketo triazole (30) exhibited anti-HCV activity with an EC50 value of 3.9 μM and an SI value more than 128. The reduction of viral protein and mRNA levels were also validated, supporting the anti-HCV activity of compound 30. These results provide convincing evidence that the diketo tetrazoles and diketo triazoles can be developed as bioisosteres of α,γ-diketo acid to exhibit potent inhibitory activity against HCV.  相似文献   

8.
Heat shock protein 90 (Hsp90), which chaperones multiple client proteins, has been shown to be implicated in HCV replication. Pharmacological inhibitors of Hsp90 display an anti-HCV activity. However, little is known about the mechanisms of regulation of HCV replication by Hsp90. Here, we show that Hsp90 inhibition by 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) destabilizes phosphoinositide-dependent kinase-1 (PDK1), an upstream kinase of the protein kinase C-related kinase 2 (PRK2) responsible for phosphorylation of HCV RNA polymerase, through the proteosome pathway. Destabilization of PDK1 led to inhibition of phosphorylation of the viral RNA polymerase through a decrease in the abundance of active form PRK2 level. Consequently, Hsp90 inhibition resulted in suppression of HCV replication both in human hepatoma Huh7 cells harboring an HCV subgenomic replicon and in HCV-infected cells. 17-DMAG treatment did not interfere with HCV internal ribosome entry site-mediated translation and the cell cycle in Huh7 cells. Co-treatment of 17-DMAG with interferon-α or HA1077, an inhibitor of PRK2, enhanced the anti-HCV activity of 17-DMAG. Taken together, these findings suggest that Hsp90 plays a critical role in the regulation of HCV RNA polymerase phosphorylation via the PDK1-PRK2 signaling pathway.  相似文献   

9.
The discovery of 2'-spirocyclopropyl-ribocytidine as a potent inhibitor of RNA synthesis by NS5B (IC(50) = 7.3 μM), the RNA polymerase encoded by hepatitis C virus (HCV), has led to the synthesis and biological evaluation of carbocyclic versions of 2'-spiropropyl-nucleosides from cyclopentenol 6. Spirocyclopropylation of enone 7 was completed by using (2-chloroethyl)-dimethylsulfonium iodide and potassium t-butoxide to form the desired intermediate 9a. The synthesized nucleoside analogues, 18, 19, 26, and 27, were assayed for their ability to inhibit HCV RNA replication in a subgenomic replicon Huh7 cell line. The synthesized cytosine nucleoside 19 showed moderate anti-HCV activity (IC(50) = 14.4 μM).  相似文献   

10.
The union of HCV-796, a potent selective HCV NS5B polymerase inhibitor, and Ribavirin, a molecule with activities against a wide spectrum of viruses, resulted in a class of new anti-HCV agents with a sequential triple inhibitory mechanism.  相似文献   

11.
4,4-Dialkyl-1-hydroxy-3-oxo-3.4-dihydronaphthalene-3-yl benzothiadiazine derivatives were synthesized and evaluated as inhibitors of genotypes 1a and 1b HCV NS5B polymerase. A number of these compounds exhibited potent activity against genotypes 1a and 1b HCV polymerase in both enzymatic and cell culture activities. A representative compound also showed favorable pharmacokinetics in the rat.  相似文献   

12.
The tylophorine analog rac-cryptopleurine exhibited potent anti-hepatitis C virus (HCV) activity through allosteric regulation of ATPase activity of heat shock cognate protein 70 (Hsc70). We evaluated the impact of modifications on the E-ring of rac-cryptopleurine to the inhibitory activity against HCV replication and regulation of ATPase activity of Hsc70. Cryptopleurine analog YXM-110 with a 13α-hydroxyl group maintained activity against HCV and promoted ATP/ADP turnover of Hsc70; however, compounds with hydroxyl groups at other positions or with other orientations (YXM-109, YXM-139, and YXM-140) did not exhibit similar activities. Size modification or heteroatom incorporation of the E-ring led to loss of anti-HCV activity. Promotion of the chaperone activity of Hsc70 with carboxyl terminus Hsc70 interacting protein (CHIP) further enhanced the anti-HCV activity of rac-cryptopleurine and XYM-110. This structure-activity relationship (SAR) study refined structural design and optimization for developing rac-crytopleurine analogs as potent anti-HCV agents targeted against the host factor involved in HCV replication.  相似文献   

13.
Hepatitis C virus (HCV) infection is a main cause of chronic liver disease, leading to liver cirrhosis and hepatocellular carcinoma (HCC). The objective of our research was to develop effective agents against viral replication. Here, we have synthesized a series of anilinoquinoline derivatives. Based on a cell-based HCV replicon system, we observed that 2-(3'-nitroanilino)quinoline (18) exhibited anti-HCV activity with a 50% effective concentration (EC(50)) value of 7μM and a selective index (SI) value of 10. In addition, compound 18 possessed the inhibitory effect on HCV NS3/4A protease activity. Therefore, we concluded that the compound 18 possessed a potent activity against HCV replication and could provide as a new lead compound as anti-HCV inhibitor.  相似文献   

14.
15.
16.

Background

Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a global health problem. Although new triple therapy (pegylated-interferon, ribavirin, and telaprevir/boceprevir) has recently been started and is expected to achieve a sustained virologic response of more than 70% in HCV genotype 1 patients, there are several problems to be resolved, including skin rash/ageusia and advanced anemia. Thus a new type of anti-HCV drug is still needed.

Methodology/Principal Findings

Recently developed HCV drug assay systems using HCV-RNA-replicating cells (e.g., HuH-7-derived OR6 and Li23-derived ORL8) were used to evaluate the anti-HCV activity of drug candidates. During the course of the evaluation of anti-HCV candidates, we unexpectedly found that two preclinical antimalarial drugs (N-89 and its derivative N-251) showed potent anti-HCV activities at tens of nanomolar concentrations irrespective of the cell lines and HCV strains of genotype 1b. We confirmed that replication of authentic HCV-RNA was inhibited by these drugs. Interestingly, however, this anti-HCV activity did not work for JFH-1 strain of genotype 2a. We demonstrated that HCV-RNA-replicating cells were cured by treatment with only N-89. A comparative time course assay using N-89 and interferon-α demonstrated that N-89-treated ORL8 cells had more rapid anti-HCV kinetics than did interferon-α-treated cells. This anti-HCV activity was largely canceled by vitamin E. In combination with interferon-α and/or ribavirin, N-89 or N-251 exhibited a synergistic inhibitory effect.

Conclusions/Significance

We found that the preclinical antimalarial drugs N-89 and N-251 exhibited very fast and potent anti-HCV activities using cell-based HCV-RNA-replication assay systems. N-89 and N-251 may be useful as a new type of anti-HCV reagents when used singly or in combination with interferon and/or ribavirin.  相似文献   

17.
HCV NS5B RNA-dependent RNA polymerase (NS5B) is essential for viral replication and is therefore considered a target for antiviral drug development. From our ongoing screening effort in the search for new anti-HCV agents, a novel inhibitor 1 with low microM activity against the HCV NS5B polymerase was identified. SAR analysis indicated the optimal substitution pattern required for activity, for example, carboxylic acid group at 2-position of thiophene ring. We describe the steps taken to identify and solve the bioactive conformation of derivative 6 through the use of the transferred NOE method (trNOE).  相似文献   

18.
A series of 2'-C-methyl branched purine and pyrimidine C-nucleosides were prepared. Their anti-HCV activity and pharmacological properties were profiled, and compared with known 2'-C-Me N-nucleoside counterparts. In particular, 2'-C-Me 4-aza-7,9-dideazaadenosine C-nucleoside (2) was found to have potent and selective anti-HCV activity in vitro as well as a favorable pharmacokinetic profile and in vivo potential for enhanced potency over the corresponding N-nucleoside.  相似文献   

19.
Chronic hepatitis C virus (HCV) infection is a worldwide public issue. In this study, we performed bioactivity-guided screening of the Lonicera hypoglauca Miq. crude extracts to find for naturally chemical entities with anti-HCV activity. Pheophytin a was identified from the ethanol-soluble fraction of L. hypoglauca that elicited dose-dependent inhibition of HCV viral proteins and RNA expression in both replicon cells and cell culture infectious system. Computational modeling revealed that pheophytin a can bind to the active site of HCV-NS3, suggesting that NS3 is a potent molecular target of pheophytin a. Biochemical analysis further revealed that pheophytin a inhibited NS3 serine protease activity with IC50 = 0.89 μM. Notably, pheophytin a and IFNα-2a elicited synergistic anti-HCV activity in replicon cells with no significant cytotoxicity. This study thereby demonstrates for the first time that pheophytin a is a potent HCV-NS3 protease inhibitor and offers insight for development of novel anti-HCV regimens.  相似文献   

20.
The therapy of chronic hepatitis C virus infections has significantly improved with the development of direct-acting antivirals (DAAs), which contain NS3/4A protease, NS5A, and NS5B polymerase inhibitors. However, mutations in specific residues in these viral target genes are associated with resistance to the DAAs. Especially inhibitors of NS3/4A protease and NS5A, such as grazoprevir and velpatasvir, have a low barrier to resistant mutations. As a result, the mutations influence the virological outcomes after DAA treatment. CypA inhibitors, as host-targeted agents, act on host factors to inhibit HCV replication, exhibiting a high resistance barrier and pan-genotype activities against HCV. Therefore, they can be developed into alternative, more effective anti-HCV agents. However, CypA inhibitors are natural products and analogs. Based on previous studies, bisamide derivatives were designed and synthesized to develop a novel class of CypA inhibitors. Bisamide derivative 7c is a promising compound with potent anti-HCV activity at subtoxic concentrations. Surface plasmon resonance experiments revealed that 7c directly binds to CypA. All these studies indicated that the derivative 7c is a potent CypA inhibitor, which can be used as a host-targeted agent in combination with other antiviral agents for anti-HCV treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号