首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytochrome A (phyA) is the dominant photoreceptor of far-red light sensing in Arabidopsis thaliana. phyA accumulates at high levels in the cytoplasm of etiolated seedlings, and light-induced phyA signaling is mediated by a complex regulatory network. This includes light- and FHY1/FHL protein-dependent translocation of native phyA into the nucleus in vivo. It has also been shown that a short N-terminal fragment of phyA (PHYA406) is sufficient to phenocopy this highly regulated cellular process in vitro. To test the biological activity of this N-terminal fragment of phyA in planta, we produced transgenic phyA-201 plants expressing the PHYA406-YFP (YELLOW FLUORESCENT PROTEIN)-DD, PHYA406-YFP-DD-NLS (nuclear localization signal), and PHYA406-YFP-DD-NES (nuclear export signal) fusion proteins. Here, we report that PHYA406-YFP-DD is imported into the nucleus and this process is partially light-dependent whereas PHYA406-YFP-DD-NLS and PHYA406-YFP-DD-NES display the expected constitutive localization patterns. Our results show that these truncated phyA proteins are light-stable, they trigger a constitutive photomorphogenic-like response when localized in the nuclei, and neither of them induces proper phyA signaling. We demonstrate that in vitro and in vivo PHYA406 Pfr and Pr bind COP1, a general repressor of photomorphogenesis, and co-localize with it in nuclear bodies. Thus, we conclude that, in planta, the truncated PHYA406 proteins inactivate COP1 in the nuclei in a light-independent fashion.  相似文献   

2.
Photoconversion of the plant photoreceptor phytochrome A (phyA) from its inactive Pr form to its biologically active Pfr from initiates its rapid proteolysis. Previous kinetic and biochemical studies implicated a role for the ubiquitin/26S proteasome pathway in this breakdown and suggested that multiple domains within the chromoprotein are involved. To further resolve the essential residues, we constructed a series of mutant PHY genes in vitro and analyzed the Pfr-specific degradation of the resulting photoreceptors expressed in transgenic tobacco. One important site is within the C-terminal half of the polypeptide as its removal stabilizes oat phyA as Pfr. Within this half is a set of conserved lysines that are potentially required for ubiquitin attachment. Substitution of these lysines did not prevent ubiquitination or breakdown of Pfr, suggesting either that they are not the attachment sites or that other lysines can be used in their absence. A small domain just proximal to the C-terminus is essential for the form-dependent breakdown of the holoprotein. Removal of just six amino acids in this domain generated a chromoprotein that was not rapidly degraded as Pfr. Using chimeric photoreceptors generated from potato PHYA and PHYB, we found that the N-terminal half of phyA is also required for Pfr-specific breakdown. Only those chimeras containing the N-terminal sequences from phyA were ubiquitinated and rapidly degraded as Pfr. Taken together, our data demonstrate that, whereas an intact C-terminal domain is essential for phyA degradation, the N-terminal domain is responsible for the selective recognition and ubiquitination of Pfr.  相似文献   

3.
Phytochrome is a red (R)/far-red (FR) light-sensing photoreceptor that regulates various aspects of plant development. Among the members of the phytochrome family, phytochrome A (phyA) exclusively mediates atypical phytochrome responses, such as the FR high irradiance response (FR-HIR), which is elicited under prolonged FR. A proteasome-based degradation pathway rapidly eliminates active Pfr (the FR-absorbing form of phyA) under R. To elucidate the structural basis for the phyA-specific properties, we systematically constructed 16 chimeric phytochromes in which each of four parts of the phytochrome molecule, namely, the N-terminal extension plus the Per/Arnt/Sim domain (N-PAS), the cGMP phosphodiesterase/adenyl cyclase/FhlA domain (GAF), the phytochrome domain (PHY), and the entire C-terminal half, was occupied by either the phyA or phytochrome B sequence. These phytochromes were expressed in transgenic Arabidopsis thaliana to examine their physiological activities. Consequently, the phyA N-PAS sequence was shown to be necessary and sufficient to promote nuclear accumulation under FR, whereas the phyA sequence in PHY was additionally required to exhibit FR-HIR. Furthermore, the phyA sequence in PHY alone substantially increased the light sensitivity to R. In addition, the GAF phyA sequence was important for rapid Pfr degradation. In summary, distinct structural modules, each of which confers different properties to phyA, are assembled on the phyA molecule.  相似文献   

4.
Phytochromes (phy) are a family of photoreceptors that control various aspects of light-dependent plant development. Phytochrome A (phyA) is responsible for the very low fluence response (VLFR) under inductive light conditions and for the high irradiance response (HIR) under continuous far-red light. We have recently shown that nuclear import of rice phyA:GFP is regulated by VLFR in transgenic tobacco. The import is preceded by very fast, light-induced formation of sequestered areas of phyA:GFP in the cytosol. Here we report that expression of the Arabidopsis phyA:GFP fusion protein in phyA-deficient Arabidopsis plants complements the mutant phenotype. In these transgenic Arabidopsis lines, both light-dependent cytosolic formation of sequestered areas of the phyA:GFP as well as VLFR or HIR-mediated nuclear import of the fusion protein was observed. By contrast, light-dependent nuclear import of the same fusion protein was induced only by continuous far-red light (HIR) but not by pulses of far-red light (VLFR) in transgenic tobacco. These results demonstrate that photoregulation of intracellular partitioning of the Arabidopsis phyA:GFP differs significantly in different genetic backgrounds.  相似文献   

5.
The control of phytochrome A expression at the protein and mRNA levels was investigated in wild-type and phyB-1 mutant sorghum ( Sorghum bicolor [L.] Moench). PHYA mRNA abundance follows a diurnal rhythm in both genotypes, with maximal accumulation near the latter part of the light period. PHYA mRNA is more abundant in the phyB-1 mutant. The level of PHYA message correlates with both R : FR and photon flux density in wild-type, but only with photon flux density in the phyB-1 mutant. The differences in mRNA abundance are reflected in the level of phyA protein, which is elevated in the phyB-1 mutant and accumulates under low photon flux density. During de-etiolation, PHYA message accumulation is initially repressed solely by a very low fluence response (VLFR) presumably mediated by phyA. The phyB-mediated low fluence response maintains the repression of accumulation past the time controlled by the VLFR. With repetitive photoperiods, the transition from the etiolated growth form to autotrophic competency is accompanied by a transition from light-induced reduction of PHYA mRNA abundance to enhanced accumulation during the light period. The loss of phyB function allows partial de-repression of PHYA message accumulation under repetitive photoperiods, resulting in plants deficient in phyB but enriched in phyA. The modification of PHYA mRNA and protein levels in the phyB-1 mutant documented in this study may help clarify the molecular basis of the phyB-1 phenotype. The tailoring of phyA abundance in wild-type to the time of day and shade signals suggests a plastic role for this pigment in controlling development in light-grown plants.  相似文献   

6.
Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR. Recombinant N-terminal half oat of PHYA bearing the phyA-303 mutation showed poor incorporation of chromophore in vitro, despite the predicted relatively long distance (>13 A) between the mutation and the closest ring of the chromophore. Fusion proteins bearing the N-terminal domain of oat phyA, beta-glucuronidase, green fluorescent protein, and a nuclear localization signal showed physiological activity in darkness and mediated VLFR but not HIR. At equal protein levels, the phyA-303 mutation caused slightly less activity than the fusions containing the wild-type sequence. Taken together, these studies highlight the role of the N-terminal domain of phyA in signaling and of distant residues of the GAF subdomain in the regulation of phytochrome bilin-lyase activity.  相似文献   

7.
Seeds of the wild type (WT) and of the phyA and phyB mutants of Arabidopsis thaliana were exposed to single red light (R)/far-red light (FR) pulses predicted to establish a series of calculated phytochrome photoequilibria (Pfr/P). WT and phyB seeds showed biphasic responses to Pfr/P. The first phase, i.e. the very-low-fluence response (VLFR), occurred below Pfr/P = 10-1%. The second phase, i.e. the low-fluence response, occurred above Pfr/P = 3%. The VLFR was similarly induced by either a FR pulse saturating photoconversion or a subsaturating R pulse predicted to establish the same Pfr/P. The VLFR was absent in phyA seeds, which showed a strong low-fluence response. In the field, even brief exposures to the very low fluences of canopy shade light (R/FR ratio < 0.05) promoted germination above dark controls in WT and phyB seeds but not in the phyA mutant. Seeds of the phyA mutant germinated normally under canopies providing higher R/FR ratios or under deep canopy shade light supplemented with R from light-emitting diodes. We propose that phytochrome A mediates VLFR of A. thaliana seeds.  相似文献   

8.
Phytochrome degradation   总被引:18,自引:3,他引:15  
Plants actively modulate the levels of the various phyto-chrome isoforms during their life cycle to optimize light absorption and perception. For phytochrome A (phyA), one of the most influential methods of control is selective turnover of the photoreceptor upon photoconversion from the red-absorbing form (Pr) to the far-red-absorbing form (Pfr). Whereas the Pr form has a half-life of approximately 1 week, the Pfr form is rapidly degraded with a half-life of 1–2 h. The ubiquitin/26S proteasome pathway has been implicated in phyA breakdown. In this proteolytic pathway, multiple ubiquitins are covalently attached to proteins committed for degradation; these ubiquitin-protein conjugates then serve as intermediates in the breakdown of the target protein by the 26S proteasome, a multi-subunit proteolytic complex. In several plant species, ubiquitin-phyA conjugates have been detected in vivo following Pfr formation that show accumulation and decay kinetics expected for Pfr degradation intermediates. Analyses of phyA mutants and phyA/phyB chimeras expressed in transgenic plants have been particularly useful in mapping domains within the chromoprotein that are necessary for Pfr degradation. Several domains have been identified within both the N- and C-terminal portions of the photoreceptor that presumably serve as recognition and/or acceptor sites for ubiquitination  相似文献   

9.
Phytochrome (phy), a 124 kDa biliprotein, mediates plants' perception of environmental light conditions including quantity, quality and duration of light. The complex phenomenology of phy function is connected with its polymorphism, the major phys being phyA and phyB. PhyA mediates irreversible photoresponses in the very low and high fluence ranges (VLFR and HIR) primarily in the far-red (FR) spectral region, whereas phyB mediates the 'classical' R/FR reversible responses in the low fluence range (LFR). This phyA specificity is determined at the level of (i) intramolecular events, (ii) turnover, phyA being light-labile, and (iii) nuclear-cytoplasmic partitioning and interaction with partner proteins. A unique feature of phyA is that two native isoforms, phyA' and phyA', comprise it, distinguished by spectroscopic and photochemical properties, localization and abundance in plant tissues, light stability, and other properties. They differ by the post-translational modification at the 6 kDa N-terminus, possibly phosphorylation, phyA' being phosphorylated and phyA' dephosphorylated. Both species participate in the light-induced nuclear-cytoplasmic partitioning. The light-labile phyA' is responsible for de-etiolation (VLFR and HIR modes), whereas the relatively more light-stable phyA' could be active throughout the whole life cycle. PhyA' interferes with the action of phyA' and this interaction may be part of the fine tuning mechanism of the phyA function. Finally, within the phyA' pool there are different conformers in thermal equilibrium, that differ by the activation and kinetic parameters of the Pr-->lumi-R photoreaction. This heterogeneity of phyA may account, at least partially, for the complex dynamics of its photoprocesses and the phenomenology of photoresponses.  相似文献   

10.
Phytochromes are red- and far-red light-reversible photoreceptors for photomorphogenesis in plants. Phytochrome A is a dimeric chromopeptide that mediates very low fluence and high irradiance responses. To analyze the surface properties of phytochrome A (phyA), the epitopes of 21 anti-phyA monoclonal antibodies were determined by variously engineered recombinant phyA proteins and the dissociation constants of seven anti-phyA monoclonal antibodies with phyA were measured using a surface plasmon resonance (SPR)-based resonant mirror biosensor (IAsys). Purified oat phyA was immobilized on the sensor surface using a carboxymethyl dextran cuvette in advance, and the interactions of each chosen monoclonal antibody against phyA in either red light absorbing form (Pr) or far-red light absorbing form (Pfr) at different concentrations were monitored. The binding profiles were analyzed using the FAST Fit program of IAsys. The resultant values of dissociation constants clearly demonstrated the differential affinities between the phyA epitopes and the monoclonal antibodies dependent upon Pr vs. Pfr conformations. Monoclonal antibody mAP20 preferentially recognized the epitope at amino acids 653-731 in the Pr form, whereas mAA02, mAP21 and mAR07/mAR08 displayed preferential affinities for the Pfr's surfaces at epitopes 494-601 (the hinge region between the N- and C-terminal domains), 601-653 (hinge in PASI domain), and 772-1128 (C-terminal domain), respectively. The N-terminal extension (1-74) was not recognized by mAP09 and mAP15, suggesting that the N-terminal extreme is not exposed in the native conformation of phyA. On the other hand, the C-terminal domain becomes apparently exposed on Pr-to-Pfr phototransformation, suggesting an inter-domain cross-talk. The use of surface plasmon resonance spectroscopy offers a new approach to study the surface properties of phytochromes associated with the photoreversible structural changes, as well as for the study of protein-protein interactions of phytochromes with their interacting proteins involved in light signaling events in plants.  相似文献   

11.
The light-induced processes of the biological photoreceptor phytochrome (recombinant phyA of oat and recombinant CphA from the cyanobacterium Tolypothrix PCC7601) have been investigated in a time-resolved manner in the temperature range from 0 to 30°C. Both proteins were heterologously expressed and assembled in vitro with phycocyanobilin. The Pr state of plant phytochrome phyA is converted to the Pfr state after formation of four intermediates with an overall quantum yield of ∼18%. The reversal reaction (Pfr-to-Pr) shows several intermediates, all of which, even the first detectable one, exhibit already all spectral features of the Pr state. The canonical phytochrome CphA from Tolypothrix showed a similar intermediate sequence as its plant ortholog. Whereas the kinetics for the forward reaction (Pr-to-Pfr) was nearly identical for both proteins, the reverse process (Pr formation) in the cyanobacterial phytochrome was slower by a factor of three. As found for the Pfr-to-Pr intermediates in the plant protein, also in CphA all detectable intermediates showed the spectral features of the Pr form. For both phytochromes, activation parameters for both the forward and the backward reaction pathways were determined.  相似文献   

12.
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.  相似文献   

13.
W Parker  M Partis  P S Song 《Biochemistry》1992,31(39):9413-9420
Phytochrome is the ubiquitous red light photoreceptor present in plants. Properties of the 6-kDa end terminal region of phytochrome A (PHYA from etiolated Avena) have been investigated by the use of synthetic polypeptide fragments corresponding to that region. This region of the phytochrome A protein has been viewed as a possible functional site due to the large differences in the sequence's conformation and exposure between the Pr (red light-absorbing form) and Pfr (far-red light-absorbing, gene-regulating form) species of phytochrome A. Hydrophobic moment calculations reveal amphiphilic helical potential in this section of the protein, consistent with the folding of the N-terminal region onto a hydrophobic chromophore/chromophore pocket. A large N-terminal synthetic peptide also demonstrated helical folding in the presence of SDS micelles. This experimental evidence indicates that the N-terminal alpha-helical folding upon conversion of the regulatorily inactive Pr to the active Pfr form of phytochrome A is likely driven at least in part by amphiphilic helix stabilization. Further, the large synthetic peptide was spectrally demonstrated to interact with phytochrome A lacking the N-terminal region. The formation of this nativelike complex may provide us with a tool for both biophysical and physiological studies on the mechanism of phytochrome A signal transduction.  相似文献   

14.
Plants perceive red (R) and far-red (FR) light signals using the phytochrome family of photoreceptors. In Arabidopsis thaliana, five phytochromes (phyA-phyE) have been identified and characterized. Unlike other family members, phyA is subject to rapid light-induced proteolytic degradation and so accumulates to relatively high levels in dark-grown seedlings. The insensitivity of phyA mutant seedlings to prolonged FR and wild-type appearance in R has led to suggestions that phyA functions predominantly as an FR sensor during the early stages of seedling establishment. The majority of published photomorphogenesis experiments have, however, used <50 micromol m(-2) sec(-1) of R when characterizing phytochrome functions. Here we reveal considerable phyA activity in R at higher (>160 micromol m(-2) sec(-1)) photon irradiances. Under these conditions, plant architecture was observed to be largely regulated by the redundant actions of phytochromes A, B and D. Moreover, quadruple phyBphyCphyDphyE mutants containing only functional phyA displayed R-mediated de-etiolation and survived to flowering. The enhanced activity of phyA in continuous R (Rc) of high photon irradiance correlates with retarded degradation of the endogenous protein in wild-type plants and prolonged epifluorescence of nuclear-localized phyA:YFP in transgenic lines. Such observations suggest irradiance-dependent 'photoprotection' of nuclear phyA in R, providing a possible explanation for the increased activity observed. The discovery that phyA can function as an effective irradiance sensor, even in light environments that establish a high Pfr concentration, raises the possibility that phyA may contribute significantly to the regulation of growth and development in daylight-grown plants.  相似文献   

15.
Abstract With appropriate pretreatment of the seeds fluence-response curves for the induction of germination of Arabidopsis thaliana show two phases. A proportion of the population responds to very low fluence (VLFR), 104–10?2μmolm?2 establishing 10?4–10?2% of the total phytochrome in the far-red absorbing form (Pfr) and a proportion of the population respond to low fluence (LFR), 1–1000 μmolm?2, establishing 1–75% Pfr. The VLFR is nol normally seen because the pre-existing Pfr level satisfies the Pfr requirement or use of green safelight establishes more Pfr than necessary to saturate the VLFR. Endogenous Pfr was depicted by a 24 h 35°C treatment, presumably as a result of dark destruction and/or dark reversion to the red absorbing form of phytochrome (Pr), making it possible to visualize the VLFR. A short pulse of 35°C treatment in combination with an appropriate temperature regime is also able to sensitize a proportion of the seed population. The proportion of the population showing the VLFR is determined by the duration of the cold imbibition pretreatment as well as the duration of the 35°C treatment. Complex fluence-response curves were observed in which a proportion of the seeds being promoted in the VLFR range, were inhibited at higher fluences before being further promoted in the LFR range. This was particularly clear for seed batches being sensitized by a short 35°C treatment. The VLFR may be of significance in the natural environment, enabling seeds buried in the upper layer of the soil to germinate, where the fluence rate falls off sharply and the LFR is not satisfied. A model is presented to explain the two phases in the fluence-response curves.  相似文献   

16.
Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the Delta6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. Delta6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, Delta6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and Delta6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by Delta6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts.  相似文献   

17.
Regulating transgene expression in vivo by delivering oral drugs has been a long-time goal for the gene therapy field. A novel gene regulating system based on targeted proteasomal degradation has been recently developed. The system is based on a destabilizing domain (DD) of the Escherichia coli dihydrofolate reductase (DHFR) that directs fused proteins to proteasomal destruction. Creating YFP proteins fused to destabilizing domains enabled TMP based induction of YFP expression in the brain, whereas omission of TMP resulted in loss of YFP expression. Moreover, induction of YFP expression was dose dependent and at higher TMP dosages, induced YFP reached levels comparable to expression of unregulated transgene., Transgene expression could be reversibly regulated using the DD system. Importantly, no adverse effects of TMP treatment or expression of DD-fusion proteins in the brain were observed. To show proof of concept that destabilizing domains derived from DHFR could be used with a biologically active molecule, DD were fused to GDNF, which is a potent neurotrophic factor of dopamine neurons. N-terminal placement of the DD resulted in TMP-regulated release of biologically active GDNF. Our findings suggest that TMP-regulated destabilizing domains can afford transgene regulation in the brain. The fact that GDNF could be regulated is very promising for developing future gene therapies (e.g. for Parkinson''s disease) and should be further investigated.  相似文献   

18.
Mutations in a component of phytochrome A (phyA)-specific light signal transduction, SPA1, result in enhanced responsiveness of Arabidopsis seedlings to red and far-red light. Here, we have examined the effects of spa1 mutations on the two known modes of phyA function, the high-irradiance responses (HIRs) to continuous irradiation with far-red light and the very-low-fluence responses (VLFRs) to inductive pulses of light that establish only a small proportion of active phyA. spa1 mutants exhibited an enhanced VLFR under hourly pulses of far-red light for hypocotyl growth inhibition, cotyledon unfolding, anthocyanin accumulation, block of greening in subsequent white light and negative regulation of phyB signaling. We provide evidence that the phenotype of spa1 mutants in red light is also caused by an increase in the VLFR. Taken together, our results indicate that light-induced hypocotyl growth inhibition in spa1 mutants is primarily due to a VLFR. While wild-type seedlings required hourly pulses of far-red light to induce a VLFR, infrequent irradiation with far-red pulses (every 12 h) was sufficient to induce a strong VLFR of hypocotyl elongation in spa1 mutants. This shows that the effect of the VLFR was more persistent in spa1 mutants than in the wild type. We, therefore, propose that SPA1 has an important function in reducing the persistence of phyA signaling. spa1 mutations also enhanced the HIRs of anthocyanin accumulation and of phyA-mediated responsivity amplification towards phyB. Thus, our results suggest that spa1 mutations amplify both the phyA-mediated VLFR and the HIR.  相似文献   

19.
20.
The exposure of dark-grown Pharbitis nil seedlings to continuous R induces a rapid decrease in PHYA mRNA abundance with a half-life of about 2 h. A 5 min R pulse also induces this decline, and the effect is partially reversible by subsequent FR irradiation, confirming that the regulation of expression is mediated via the Pfr form of a phytochrome. When de-etiolated seedlings are returned to darkness after a W photoperiod, PHYA mRNA slowly reaccumulates from 20% to 50% of the dark level within 24 h. The rate of reaccumulation is greatly accelerated by the removal of Pfr with a FR pulse, resulting in reaccumulation to 100% within approximately 11 h. Without FR irradiation PHYA mRNA expression remains fully repressed for at least 11 h after the end of the photoperiod, suggesting that the controlling Pfr is highly stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号