首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During the development of atherosclerotic and fibromuscular proliferates/lesions, smooth muscle cells (SMC) in the media, particularly near the lumen, are activated to migrate into the intima, where they continue to proliferate to form an intimal thickening. It is to date unclear whether SMCs situated adjacent to the adventitia possess a lower capacity to proliferate because they are a special subpopulation of medial SMCs or because the adventitia excerts an inhibitory effect. We have, therefore, developed an in vitro system whereby we have attempted to clear up this uncertainty. The following observations were made from the in vitro experiments: Media-explants from rabbit aorta were laid on a polycarbonate filter with pores 5 microns in diameter. The SMCs migrated through the pores and formed a fibromuscular proliferate on the other side of the filter. Endothelial cells were seeded on one side of the filter before media-explants were laid on the other side of the filter. The confluent endothelium inhibited migration of SMCs through the filter pores. Media-explants were placed between two polycarbonate filters (pores 5 microns diameter). In this "sandwich" arrangement SMCs migrated through both filters, i.e., in both directions. The quantity of migrating and proliferating cells through both filters was almost identical. This suggests that there is no difference in the migratory and proliferative capacity of SMCs in the inner and outer layers in the media of arteries. To investigate the influence of the adventitia on medial SMCs, media-explants were placed between a lower (5 microns) and an upper (0.2 micron) filter. On the 0.2 micron filter adventitia-explants were laid above the media-explants. The 0.2 micron filter prevented migration of SMCs from the media-explant into the adventitia and migration of fibroblasts from the adventitia into the media. Interestingly, the adventitial tissue inhibited proliferation of SMCs at the abluminal and migration and proliferation at the luminal side of the media-explant; the number of cells migrating through the 5 microns pores at the luminal side was diminished, suggesting that the adventitial tissue has an antiproliferative influence on SMCs. Moreover, it was found that in media-explants near the filter with adventitia, the medial SMCs were in a better preserved condition than at the de-endothelialised luminal side. As a control, cultures consisting of media-explants were incubated without filters (i.e., explant organ cultures). The proliferates in the concavity (luminal side) exhibited a pattern of proliferating SMCs different from that of the cells at the abluminal convexity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A two-dimensional (2D) numerical simulation of convective–diffusive transport of LDL in the artery wall, coupled with the wall shear stress gradient (WSSG)-dependent LDL consumption of smooth muscle cells (SMCs) is presented. SMCs are modeled as an array of solid cylindrical pillars embedded in a continuous porous media which represents the interstitial proteoglycan and collagen fiber matrix. The internal elastic lamina (IEL), which separates the artery media from the intima, is modeled as an impermeable barrier to both water and LDL except for the fenestral pores that are assumed to be uniformly distributed over the IEL. The predictions demonstrate a range of interesting features of LDL transport and uptake in the media. For cells immediately below the fenestral pores, LDL uptake of SMCs is highly dependent on WSSG. Moreover, the rate of LDL consumption by SMCs is also affected by the diameter of the fenestral pore. This will be helpful in understanding the involvement of transmural transport processes in the initiation and development of atherosclerosis.  相似文献   

4.
The internal elastic lamina (IEL), which separates the arterial intima from the media, affects macromolecular transport across the medial layer. In the present study, we have developed a two-dimensional numerical simulation model to resolve the influence of the IEL on convective-diffusive transport of macromolecules in the media. The model considers interstitial flow in the medial layer that has a complex entrance condition because of the presence of leaky fenestral pores in the IEL. The IEL was modeled as an impermeable barrier to both water and solute except for the fenestral pores that were assumed to be uniformly distributed over the IEL. The media were modeled as a heterogeneous medium composed of an array of smooth muscle cells (SMCs) embedded in a continuous porous medium representing the interstitial proteoglycan and collagen fiber matrix. Results for ATP and low-density lipoprotein (LDL) demonstrate a range of interesting features of molecular transport and uptake in the media that are determined by considering the balance among convection, diffusion, and SMC surface reaction. The ATP concentration distribution depends strongly on the IEL pore structure because ATP fluid-phase transport is dominated by diffusion emanating from the fenestral pores. On the other hand, LDL fluid-phase transport is only weakly dependent on the IEL pore structure because convection spreads LDL laterally over very short distances in the media. In addition, we observe that transport of LDL to SMC surfaces is likely to be limited by the fluid phase (surface concentration less than bulk concentration), whereas ATP transport is limited by reaction on the SMC surface (surface concentration equals bulk concentration).  相似文献   

5.
Interstitial flow through the tunica media of an artery wall in the presence of the internal elastic lamina (IEL), which separates it from the subendothelial intima, has been studied numerically. A two-dimensional analysis applying the Brinkman model as the governing equation for the porous media flow field was performed. In the numerical simulation, the IEL was modeled as an impermeable barrier to water flux, except for the fenestral pores, which were uniformly distributed over the IEL. The tunica media was modeled as a heterogeneous medium composed of a periodic array of cylindrical smooth muscle cells (SMCs) embedded in a fiber matrix simulating the interstitial proteoglycan and collagen fibers. A series of calculations was conducted by varying the physical parameters describing the problem: the area fraction of the fenestral pore (0. 001-0.036), the diameter of the fenestral pore (0.4-4.0 microm), and the distance between the IEL and the nearest SMC (0.2-0.8 microm). The results indicate that the value of the average shear stress around the circumference of the SMC in the immediate vicinity of the fenestral pore could be as much as 100 times greater than that around an SMC in the fully developed interstitial flow region away from the IEL. These high shear stresses can affect SMC physiological function.  相似文献   

6.
Only a few previous works investigated the involvement of Chlamydia pneumoniae (Chlamydophila pneumoniae) in arterial calcification. The present study investigated a possible association between C. pneumoniae and medial calcification. Carotid artery segments obtained by endarterectomy from 60 patients were examined by PCR and immunohistochemistry to identify the presence of C. pneumoniae. Arterial specimens showing double-positive (n = 17), double-negative (n = 22), and single-positive results (n = 21) were further analyzed by a combination of histology, immunohistochemistry, and electron microscopy. Medial calcification occurred in 10 of 17 (58.8%) C. pneumoniae double-positive arterial specimens, but no medial calcification was observed in any of 22 C. pneumoniae double-negative arterial specimens. Electron microscopy indicated C. pneumoniae in smooth muscle cells (SMCs) in foci of medial calcification. Medial SMCs showing damage to the cytoplasm and basement membrane contained the structures with the appearance of elementary, reticulate, and aberrant bodies of C. pneumoniae. The presence of C. pneumoniae in SMCs was confirmed by electron-microscopic immunocytochemistry. In the extracellular matrix, calcification was observed in C. pneumoniae aberrant bodies that exited the SMCs. The findings offer a new hypothesis of arterial calcification: they suggest that C. pneumoniae infection of medial SMCs may be associated with the pathophysiological events of arteriosclerotic calcification of the tunica media.  相似文献   

7.
Artery segments were microdissected from distal acini of the rat lung and studied by light and electron microscopy. Morphometric methods were used to quantify the structure of the wall at defined levels within the normal axial pathway and to determine the changes after 5 and 7 days of whole-animal exposure to hypobaric hypoxia at an inspiratory O2 fraction of 0.1. In the normal lung, at the level of the terminal bronchiolus, the artery wall comprised up to six layers of smooth muscle cells (SMCs). At the respiratory bronchiolar level, however, the wall contained fewer than two layers of SMCs with a consistently circumferential orientation. By the second-generation alveolar ducts (AD2), the medial layer was lost, replaced by subendothelial precursor smooth muscle cells (PCs) resembling intermediate cells. At this and the next level (AD3), the PC layer was often circumferentially discontinuous. Regression analysis of the morphometric data suggested, however, that the smallest AD3 artery is likely to have a layer of PCs but with virtually no measurable separation between them and the endothelium. The mean maximum radial diameter of SMCs decreased along the axial pathway with a significant difference between diameters at terminal bronchiolus and AD2 levels; yet the diameter of endothelial cells remained the same. After 7 days of hypoxia, no change was noted in the number of smooth muscle layers, but at the AD2 level the relative area of media in the total wall increased. This was due in part to hypertrophy of PCs, as evidenced by an increase in their mean maximum radial diameter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Regulation of tone, blood pressure, and blood flow in the cerebral vasculature is of vital importance, particularly in the developing infant. We tested the hypothesis that, in addition to accretion of smooth muscle cells (SMCs) in cell layers with vessel thickening, significant changes in smooth muscle structure, as well as phenotype, extracellular matrix, and membrane proteins, in the media of cerebral arteries (CAs) during the course of late fetal development account for associated changes in contractility. Using transmission electron, confocal, wide-field epifluorescence, and light microscopy, we examined the structure and ultrastructure of CAs. Also, we utilized wire myography, Western immunoblotting, and real-time quantitative PCR to examine several other features of these arteries. We compared the main branch ovine middle CAs of 95- and 140-gestational day (GD) fetuses with those of adults (n = 5 for each experimental group). We observed a graded increase in phenylephrine- and KCl-induced contractile responses with development. Structurally, lumen diameter, media thickness, and media cross-sectional area increased dramatically from one age group to the next. With maturation, the cross-sectional profiles of CA SMCs changed from flattened bands in the 95-GD fetus to irregular ovoid-shaped fascicles in the 140-GD fetus and adult. We also observed a change in the type of collagen, specific integrin molecules, and several other parameters of SMC morphology with maturation. Ovine CAs at 95 GD appeared morphologically immature and poorly equipped to respond to major hemodynamic adjustments with maturation.  相似文献   

9.
Restenosis, or arterial lumen re-narrowing, occurs in 30–50% of the patients undergoing angioplasty. Adaptive remodeling is the compensatory enlargement of the vessel size, and has been reported to prevent the deleterious effects of restenosis. Our previous studies have shown that elevated transforming growth factor (TGF-β) and its signaling protein Smad3 in the media layer induce adaptive remodeling of angioplastied rat carotid artery accompanying an increase of total collagen in the adventitia. In order to gain insights into a possible role of collagen in Smad3-induced adaptive remodeling, here we have investigated a mechanism of cell–cell communication between medial smooth muscle cells (SMCs) and adventitial fibroblasts in regulating the secretion of two major collagen subtypes. We have identified a preferential collagen-3 versus collagen-1 secretion by adventitial fibroblasts following stimulation by the conditioned medium from the TGF-β1-treated/Smad3-expressing medial smooth muscle cells (SMCs), which contained higher levels of CTGF and IGF2 as compared to control medium. Treating the TGF-β/Smad3-stimulated SMCs with an siRNA to either CTGF or IGF2 reversed the effect of conditioned media on preferential collagen-3 secretion from fibroblasts. Moreover, recombinant CTGF and IGF2 together stimulated adventitial fibroblasts to preferentially secrete collagen-3 versus collagen-1. This is the first study to identify a preferential secretion of collagen-3 versus collagen-1 from adventitial fibroblasts as a result of TGF-β/Smad3 stimulation of medial SMCs, and that CTGF and IGF2 function together to mediate this signaling communication between the two cell types.  相似文献   

10.
This study examined the effect of reduced glutathione (GSH), an important antioxidant that restores intracellular redox imbalance and prevents inactivation of endothelial-derived nitric oxide, on the abnormal vasomotor reactivity in spastic coronary arteries. The responses of epicardial diameter of the left coronary arteries to intracoronary infusion of acetylcholine (ACh; 50 microg/min) were measured by quantitative coronary angiography before and during combined intracoronary infusion of GSH (50 mg/min for 6 min) or saline as a placebo in 24 patients with coronary spastic angina and in 28 control patients. All of the spastic coronary arteries showed constrictor response to ACh, whereas the control coronary arteries as a whole showed only minimal diameter changes to ACh. GSH infusion suppressed constrictor response of epicardial diameter to ACh in patients with coronary spastic angina, whereas it had no significant effect in control subjects. Saline infusion did not have any effects. The results indicate that GSH attenuated the constrictor response to ACh in epicardial coronary arteries of patients with coronary spastic angina. GSH may have an important role in the regulation of coronary vasomotor function in patients with coronary spastic angina.  相似文献   

11.
12.
The reactivity of lung microvessels is determined by a method based on planimetry of elastic laminae (EL) in vessel cross sections. Because wall structure is assessed, arteries that undergo remodeling during chronic hypertension can be identified. To study the structure and reactivity of such vessels, slices obtained from lungs of six rats exposed to hypobaric hypoxia for 14 days and from normoxic controls were incubated in culture with 10(-4) M l-epinephrine (EPI), then fixed and processed for microscopy. For muscular arteries (less than 200 microns diam), the circumferential length of internal EL (IEL) is positively correlated with length of external EL (EEL). In larger arteries, EEL is shorter than IEL and may restrict distension, but in smaller arteries the converse is true. After chronic hypoxia, the regression line shifts, indicating structural remodeling. For newly muscularized arteries found only after hypoxia the new IEL is always shorter than EEL, and a complex network of elastin connects the two. Muscular arteries constrict with EPI to the same degree after hypoxia as after normoxia. Nonmuscular vessels (arteries and veins) also constrict similarly after either exposure regimen. For newly muscularized arteries of the same size and location as the nonmuscular vessels, the response is significantly less.  相似文献   

13.
14.
Pial arteries play a key role in the regulation of human cerebral blood flow. However, many of the features and mechanisms that regulate the tone and diameters of these vessels cannot be studied in situ. One approach is to study in vitro segments of arteries obtained during neurosurgical procedures. The ratios of arterial media thickness to lumen diameter and of the capacity to develop wall force to lumen diameter have important functional consequences and are known to change in disease. Experiments were carried out on pial arteries from normotensive humans to determine the way in which these parameters vary with vessel size. Vessel dimensions--media thickness and lumen diameter were derived from fixed sections using quantitative morphometry. Wall force was measured using a resistance artery myograph. The ratio of media thickness to lumen diameter and of maximum tension developed to lumen diameter both increased as vessel diameter decreased. These ratios do not change over the age range of 15-75 years. These findings show that although in vivo intralumenal pressure falls as human pial arteries become smaller, their media thickness and capacity to develop tone increase.  相似文献   

15.
Cerebral vasospasm (CVS) is the most common serious complication of subarachnoid hemorrhage. Among the many factors that are associated with the pathogenesis of CVS, hemodynamics plays an important role in the initiation and development of CVS. Numerical simulation was carried out to obtain the flow patterns and wall shear stress (WSS) distribution in spastic middle cerebral arteries. The blood was assumed to be incompressible, laminar, homogenous, Newtonian, and steady. Our simulations reveal that flow velocity and WSS level increase at the stenosis segment of the spastic vessels, but further downstream of stenosis, the WSS significantly decreases along the inner wall, and flow circulation and stagnation are observed. The hydrodynamic resistance increases with the increase of vessel spasm. Moreover, the change of flow field and hydrodynamic forces are not linearly proportional to the spasm level, and the rapid change of hemodynamic parameters is observed as the spasm is more than 50%. Accordingly, in the view of hemodynamic physiology, vessels with less than 30% stenosis are capable of self-restoration towards normal conditions. However, vessels with more than 50% stenosis may eventually lose their capacity to adapt to differing physiologic conditions due to the extreme non-physilogic hemodynamic environment, and the immediate expansion of the vessel lumen might be needed to minimize serious and non-reversible effects.  相似文献   

16.
Natriuretic peptide system gene expression in human coronary arteries.   总被引:11,自引:0,他引:11  
The natriuretic peptides (NPs) ANF, BNP, and CNP have potent anti-proliferative and anti-migratory effects on vascular smooth muscle cells (SMCs). These properties make NPs relevant to the study of human coronary atherosclerosis because vascular cell proliferation and migration are central to the pathophysiology of atherosclerosis. However, the existence and cytological distribution of NPs and their receptors in human coronary arteries remain undetermined. This has hampered the development of hypotheses regarding the possible role of NPs in human coronary disease. We determined the pattern of expression of NPs and their receptors (NPRs) in human coronary arteries with atherosclerotic lesions classified by standard histopathological criteria as fatty streak/early atherosclerotic lesions, intermediate plaques, or advanced lesions. The investigation was carried out using a combination of immunocytochemistry (ICC), in situ hybridization (ISH), and semi-quantitative polymerase chain reaction (PCR). Both by ICC and ISH, ANF was found in the intimal and medial layers of all lesions. BNP was highly expressed in advanced lesions where it was particularly evident by a strong ISH signal but weak ICC staining. CNP was demonstrable in all types of lesions, giving a strong signal by ISH and ICC. This peptide was particularly demonstrable in the endothelium, as well as in the SMCs of the intima, media, and vasa vasorum of the adventitia and in macrophages. By ISH, NPR-A was not detectable in any of the lesions but both NPR-B and NPR-C were found in the intimal and the inner medial layers. By RT-PCR, mRNA levels of all NPs tended to be increased in macroscopically diseased arteries, but only the values for BNP were significantly so. No significant changes in NPR mRNA levels were detected by PCR. In general, the signal intensity given by the NPs and their receptors by ICC or ISH appeared dependent on the type of lesion, being strongest in intermediate plaques and decreasing with increasing severity of the lesion. This study constitutes the first demonstration of NPs and NPR mRNAs in human coronary arteries and supports the existence of an autocrine/paracrine NP system that is actively modulated during the progression of atherosclerotic coronary disease. This suggests that the coronary NP system is involved in the pathobiology of intimal plaque formation in humans and may be involved in vascular remodeling.  相似文献   

17.
Previous studies have shown that neointima formation and adventitial remodeling play an important role in the enlargement of collateral vessels (CVs) during coronary arteriogenesis in the dog heart. In this study, we investigated the importance of remodeling of the tunica media in the same model. Basal membrane (BM), contractile and cytoskeletal components of smooth muscle cells (SMCs) were studied in growth of coronary CVs induced by chronic occlusion of the left circumflex (LCX) coronary artery by routine histology, electron microscopy (EM), and immunoconfocal microscopy using antibodies against α-smooth actin (α-SM actin), calponin, desmin, and laminin. In addition, matrix metalloproteinase-2 (MMP-2) and tissue inhibitor-1 of matrix metalloproteinase (TIMP-1) were investigated. The data showed that (1) in normal small arteries (NVs) laminin formed a network in which SMCs were encaged;α-SM actin, calponin and desmin were evenly expressed in SMCs; (2) in early (2 weeks) growing CVs the laminin network was disrupted, desmin was significantly reduced in SMCs, but α-SM actin and calponin still highly expressed; (3) in actively (6 weeks) growing CVs laminin was still weak in the tunica media (TM), but without network-like structure. Desmin was further reduced in SMCs of TM, whereas α-SM actin and calponin showed little changes, although they were significantly decreased in intimal SMCs; (4) in mature CVs, the network-like structure was re-formed, and α-SM actin, calponin, and desmin were all similar to that in normal vessels; (5) histology for BM confirmed laminin staining; (6) EM revealed that in NVs the SMCs contained abundant contractile filaments and were surrounded by a layer of BM whereas in growing CVs, BM structure was not observed, but the SMCs in the media still contained many myofilaments; (7) MMP-2 was highly expressed in the media of early growing vessels, but decreased in TM of actively growing vessels where TIMP-1 expression was high. In conclusion, our data revealed features of TM of growing CVs. Disruption and degradation of BM facilitate SMC proliferation, and together with reduction of desmin and fragmentation of the internal elastic lamina enable the vascular wall to expand and enlarge when blood pressure and shear stress increase. MMP2 may be an important player in regulating SMC phenotype, proliferation, migration and maintaining integrity of the vascular wall through governing proteolysis during arteriogenesis. (Mol Cell Biochem 264: 201–210, 2004)  相似文献   

18.
The migration of cultured cultured smooth muscle cells (SMCs) is regulated by the time-specific expression of members of the LDL receptor family (LRs). LRP1B, a member of LRs, modulates the catabolism of PDGF beta-receptor, affecting the migration of SMCs. An involvement of PDGF beta-receptor in atherosclerosis is focused because of its abundant expression in intimal SMCs. Here, in order to know a functional significance of LRP1B in the increased migration of intimal SMCs, the functions of three groups of cultured SMCs with different origins in atherosclerotic arteries were studied. Each group of SMCs (central, marginal or medial SMCs) was isolated from explanted pieces of central or marginal area of thickened intima, or media prepared from rabbit aortic plaques. The LRP1B expression levels were significantly decreased in intimal SMCs, particularly in marginal SMCs, compared to medial SMCs. The expression levels of LRP1B in SMCs were negatively correlated with those of PDGF beta-receptor. The level of PDGF beta-receptor-mediated phosphorylation of ERK 1/2 in central SMCs was increased to 5.2-fold with the functional inhibition of LRP1B using anti-LRP1B IgY. The antibody increased the PDGF-BB-stimulated migration and invasion activities in SMCs. The increase in the PDGF beta-receptor-mediated outgrowth activity of SMCs from the explants was also inhibited by the functional inhibition of LRP1B. These results indicate that LRP1B regulated the migration activity of SMCs through the modulation of PDGF beta-receptor-mediated pathway. The regulation of LRP1B expression is possibly involved in the activated migration of intimal SMCs in the course of atherosclerosis.  相似文献   

19.
Scanning electron microscopy was used to study the normal architectural arrangement of elastic tissue in a medium-sized muscular artery. Selective NaOH sonication digestion or formic acid digestion was used to expose and isolate the elastic networks in the femoral arteries of four healthy dogs. The digested segments were neutralized and freeze-dried before mounting for scanning electron microscopy (SEM) observation. The fenestrated internal elastic lamina (IEL) had a smooth surface with scattered regions of the fine elastic fibers that made up lacy networks protruding from the luminal surface. Prominent ellipsoid fenestrae, randomly scattered across the surface, were grouped into small and large sizes based on their mean diameter. The openings of most fenestrae were bridged by elastic fibers to give the fenestrae a sieve-like appearance. Large, transversely oriented, fusiform gaps were randomly scattered along the length of the IEL. These gaps, filled in by an elastic fiber network, sometimes spanned as much as a quarter of the vessel circumference. It is suggested that these gaps represent splits in the IEL that have been repaired. The tunica media contained a complex network of anastomosing elastic fibers and lamellae that were primarily circumferential in orientation. A well-defined external elastic lamina formed a solid sheet at the junction of the tunica media and the tunica adventitia. The tunica adventitia contained 8-10 incomplete lamellae of large, interconnecting, longitudinally oriented fibers. The architecture of the elastic network in canine femoral artery was compared with that previously described in medium-sized canine veins and in the rat femoral artery.  相似文献   

20.
Hassan GS  Douglas SA  Ohlstein EH  Giaid A 《Peptides》2005,26(12):2464-2472
The vasoactive peptide urotensin-II (U-II) is best known for its ability to regulate peripheral vascular and cardiac contractile function in vivo, and recent in vitro studies have suggested a role for the peptide in the control of vascular remodeling by inducing smooth muscle proliferation and fibroblast-mediated collagen deposition. Therefore, U-II may play a role in the etiology of atherosclerosis. In the present study we sought to determine the expression of U-II in coronary arteries from patients with coronary atherosclerosis and from normal control subjects, using immunohistochemistry and in situ hybridization. In normal coronary arteries, there was little expression of U-II in all types of cells. In contrast, in patients with coronary atherosclerosis, endothelial expression of U-II was significantly increased in all diseased segments (P < 0.05). Greater expression of U-II was noted in endothelial cells of lesions with subendothelial inflammation or fibrofatty lesion compared with that of endothelial cells underlined by dense fibrosis or minimal intimal thickening. Myointimal cells and foam cells also expressed U-II. In most diseased segments, medial smooth muscle cells exhibited moderate expression of U-II. These findings demonstrate upregulation of U-II in endothelial, myointimal and medial smooth muscle cells of atherosclerotic human coronary arteries, and suggest a possible role for U-II in the pathogenesis of coronary atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号