首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物体内的α,β-不饱和活性醛类化合物对植物细胞具有毒害作用,清除这些α,β-不饱和活性醛类化合物对于植物细胞维持正常的生命活动至关重要。前人研究报道通过体外酶活测定和异源瞬时表达鉴定拟南芥 At3g04000基因编码的蛋白为 NADPH 依赖的叶绿体醛还原酶(Arabidopsis NADPH-dependent chloroplastic aldehyde reductases, AtChlADRs),推测其在清除叶绿体中长链(≥5)α,β-不饱和醛类物质中具有重要的功能。该研究主要构建了拟南芥 At3g04000基因的表达模式分析载体 ProAt3g04000:GUS、亚细胞定位分析载体At3g04000-EGFP 和过量表达载体 At3g04000-OE,并获得了转基因拟南芥,并通过实时定量 PCR 分析了At3g04000基因在拟南芥不同组织中的转录水平。结果表明:拟南芥 At3g04000基因在幼苗中的转录水平最高,在莲座叶、茎生叶、花序和角果中均有较高的转录水平;而在根部和茎秆中的转录水平较低。通过对ProAt3g04000:GUS 转基因植株的 GUS 染色分析可知,At3g04000基因在子叶、莲座叶和萼片的维管组织和保卫细胞中均有较强的表达,在根的维管组织中有较弱的表达。通过共聚焦显微镜对 At3g04000-EGFP 转基因植株的观察和分析发现,At3g04000不是定位于叶绿体中,而是定位在细胞质和细胞核中。该研究结果为深入研究拟南芥醛还原酶编码基因 At3g04000的功能奠定了基础。  相似文献   

2.
3.
Alkenal double bond reductases (DBRs) catalyze the NADPH-dependent reduction of the α,β-unsaturated double bond of many secondary metabolites. Two alkenal double bond reductase genes PaDBR1 and PaDBR2 were isolated from the liverwort species Plagiochasma appendiculatum. Recombinant PaDBR2 protein had a higher catalytic activity than PaDBR1 with respect to the reduction of the double bond present in hydroxycinnamyl aldehydes. The residue at position 56 appeared to be responsible for this difference in enzyme activity. The functionality of a C56 to Y56 mutation in PaDBR1 was similar to that of PaDBR2. Further site-directed mutagenesis and structural modeling suggested that the phenol ring stacking between this residue and the substrate was an important determinant of catalytic efficiency.  相似文献   

4.
Almost all terrestrial plants produce green leaf volatiles (GLVs), consisting of six-carbon (C6) aldehydes, alcohols and their esters, after mechanical wounding. C6 aldehydes deter enemies, but C6 alcohols and esters are rather inert. In this study, we address why the ability to produce various GLVs in wounded plant tissues has been conserved in the plant kingdom. The major product in completely disrupted Arabidopsis leaf tissues was (Z)-3-hexenal, while (Z)-3-hexenol and (Z)-3-hexenyl acetate were the main products formed in the intact parts of partially wounded leaves. (13)C-labeled C6 aldehydes placed on the disrupted part of a wounded leaf diffused into neighboring intact tissues and were reduced to C6 alcohols. The reduction of the aldehydes to alcohols was catalyzed by an NADPH-dependent reductase. When NADPH was supplemented to disrupted tissues, C6 aldehydes were reduced to C6 alcohols, indicating that C6 aldehydes accumulated because of insufficient NADPH. When the leaves were exposed to higher doses of C6 aldehydes, however, a substantial fraction of C6 aldehydes persisted in the leaves and damaged them, indicating potential toxicity of C6 aldehydes to the leaf cells. Thus, the production of C6 aldehydes and their differential metabolisms in wounded leaves has dual benefits. In disrupted tissues, C6 aldehydes and their α,β-unsaturated aldehyde derivatives accumulate to deter invaders. In intact cells, the aldehydes are reduced to minimize self-toxicity and allow healthy cells to survive. The metabolism of GLVs is thus efficiently designed to meet ecophysiological requirements of the microenvironments within a wounded leaf.  相似文献   

5.
Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the alpha,beta-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the alpha,beta-unsaturated bond of the photoproduced reactive carbonyls.  相似文献   

6.
Aldehyde oxidoreductase (AOR) activity has been found in a number of sulfate-reducing bacteria. The enzyme that is responsible for the conversion of aldehydes to carboxylic acids is a mononuclear molybdenum enzyme belonging to the xanthine oxidase family. We report here the purification and characterization of AOR isolated from the sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254, an aminolytic strain performing thiosulfate dismutation. The enzyme is a homodimer (ca. 200 kDa), containing a molybdenum centre and two [2Fe-2S] clusters per monomer. UV/Visible and electron paramagnetic resonance (EPR) spectra of D. aminophilus AOR recorded in as-prepared and reduced states are similar to those obtained in AORs from Desulfovibrio gigas, Desulfovibrio desulfuricans and Desulfovibrio alaskensis. Despite AOR from D. aminophilus is closely related to other AORs, it presents lower activity towards aldehydes and no activity towards N-heterocyclic compounds, which suggests another possible role for this enzyme in vivo. A comparison of the molecular and EPR properties of AORs from different Desulfovibrio species is also included.  相似文献   

7.
8.
An aldehyde reductase catalyzing the NADPH-dependent reduction of D-erythrose 4-phosphate to D-erythritol 4-phosphate was purified from beef liver. It was proved to be homogeneous by polyacrylamide gel electrophoresis, sodium dodecyl sulfate polyacrylamide gel electrophoresis and ultracentrifugation analysis. The enzyme was proved to be a monomeric enzyme and its molecular weight was about 40,000. The enzyme was able to reduce not only tetroses but also trioses, aromatic aldehydes, D-glucuronate and succinic semialdehyde. Apparent Km-values for aromatic aldehydes were lower than those for tetroses, trioses, D-glucuronate and succinic semi-aldehyde. Barbiturates and valproate were potent inhibitors of the enzyme and their apparent K1-values were in the range of 80-180 microM. Quercitrin was the most potent inhibitor and its K1-value was about 7 microM. From the viewpoint of substrate specificity and inhibitor sensitivity, it seems that the enzyme belongs to the high-Km type aldehyde reductases.  相似文献   

9.
In this study, we determined the crystal structures of the apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase encoded by At5g16970. This protein, one of 11 homologues in Arabidopsis thaliana, is most closely related to the Pinus taeda phenylpropenal double bond reductase, involved in, for example, heartwood formation. Both enzymes also have essential roles in plant defense, and can function by catalyzing the reduction of the 7-8-double bond of phenylpropanal substrates, such as p-coumaryl and coniferyl aldehydes in vitro. At5g16970 is also capable of reducing toxic substrates with the same alkenal functionality, such as 4-hydroxy-(2E)-nonenal. The overall fold of At5g16970 is similar to that of the zinc-independent medium chain dehydrogenase/reductase superfamily, the members of which have two domains and are dimeric in nature, i.e. in contrast to their original classification as being zinc-containing oxidoreductases. As provisionally anticipated from the kinetic data, the shape of the binding pocket can readily accommodate p-coumaryl aldehyde, coniferyl aldehyde, 4-hydroxy-(2E)-nonenal, and 2-alkenals. However, the enzyme kinetic data among these potential substrates differ, favoring p-coumaryl aldehyde. Tyr-260 is provisionally proposed to function as a general acid/base for hydride transfer. A catalytic mechanism for this reduction, and its applicability to related important detoxification mammalian proteins, is also proposed.  相似文献   

10.
Four NADPH-dependent aldehyde reductases (ALRs) isolated from pig brain have been characterized with respect to substrate specificity, inhibition by drugs, and immunological criteria. The major enzyme, ALR1, is identical in these respects with the high-Km aldehyde reductase, glucuronate reductase, and tissue-specific, e.g., pig kidney aldehyde reductase. A second enzyme, ALR2, is identical with the low-Km aldehyde reductase and aldose reductase. The third enzyme, ALR3, is carbonyl reductase and has several features in common with prostaglandin-9-ketoreductase and xenobiotic ketoreductase. The fourth enzyme, unlike the other three which are monomeric, is a dimeric succinic semialdehyde reductase. All four of these enzymes are capable of reducing aldehydes derived from the biogenic amines. However, from a consideration of their substrate specificities and the relevant Km and Vmax values, it is likely that it is ALR2 which plays a primary role in biogenic aldehyde metabolism. Both ALR1 and ALR2 may be involved in the reduction of isocorticosteroids. Despite its capacity to reduce ketones, ALR3 is primarily an aldehyde reductase, but clues as to its physiological role in brain cannot be discerned from its substrate specificity. The capacity of succinic semialdehyde reductase to reduce succinic semialdehyde better than any other substrate shows that this reductase is aptly named and suggests that its primary role is the maintenance in brain of physiological levels of gamma-hydroxybutyrate.  相似文献   

11.
Lipid peroxide-derived reactive carbonyls (RCs) can cause serious damage to plant functions. A chloroplastic NADPH-dependent alkenal/one oxidoreductase (AOR) detoxifies RCs, but its physiological significance remains unknown. In this study, we investigated the biological impacts of AOR using an AOR-knock out Arabidopsis line (aor). Methyl viologen treatment, mainly to enhance photosystem (PS) I-originated reactive oxygen species (ROS) production, caused more severe damage to aor than wild type (Col-0). In contrast, the high light treatment used to enhance PSII-originated ROS production resulted in no difference in PSII damage between Col-0 and aor. In conclusion, AOR can contribute to detoxify stromal RCs produced under oxidative stress.  相似文献   

12.
Mammalian xanthine oxidase (XO) and Desulfovibrio gigas aldehyde oxidoreductase (AOR) are members of the XO family of mononuclear molybdoenzymes that catalyse the oxidative hydroxylation of a wide range of aldehydes and heterocyclic compounds. Much less known is the XO ability to catalyse the nitrite reduction to nitric oxide radical (NO). To assess the competence of other XO family enzymes to catalyse the nitrite reduction and to shed some light onto the molecular mechanism of this reaction, we characterised the anaerobic XO- and AOR-catalysed nitrite reduction. The identification of NO as the reaction product was done with a NO-selective electrode and by electron paramagnetic resonance (EPR) spectroscopy. The steady-state kinetic characterisation corroborated the XO-catalysed nitrite reduction and demonstrated, for the first time, that the prokaryotic AOR does catalyse the nitrite reduction to NO, in the presence of any electron donor to the enzyme, substrate (aldehyde) or not (dithionite). Nitrite binding and reduction was shown by EPR spectroscopy to occur on a reduced molybdenum centre. A molecular mechanism of AOR- and XO-catalysed nitrite reduction is discussed, in which the higher oxidation states of molybdenum seem to be involved in oxygen-atom insertion, whereas the lower oxidation states would favour oxygen-atom abstraction. Our results define a new catalytic performance for AOR—the nitrite reduction—and propose a new class of molybdenum-containing nitrite reductases.  相似文献   

13.
The hydroxynitrile lyase (HNL) activity of nine defatted Prunus seeds was compared for catalyzing the addition of HCN to aromatic, heteroaromatic and α,β-unsaturated aldehydes. Although the conversion and enantiomeric excess (ee) of the corresponding cyanohydrins were both influenced by the HNL source and the chemical structure of the aldehyde, Prunus HNLs were all suitable for the enantioselective preparation of cyanohydrins.  相似文献   

14.
The reaction of betulinic aldehydes with various carbon nucleophiles gave a series of new betulin derivatives, among them epoxides, glycidic derivatives and β-hydroxy carbonyl compounds. Subsequent transformations of the β-hydroxy carbonyls lead to 1,3-diketo- and α,β-unsaturated betulin derivatives. These compounds were assayed for cytotoxicity using 15 human cancer cell lines and a colorimetric SRB-assay. Several compounds revealed significant antitumour activity.  相似文献   

15.
The hydroxynitrile lyase (HNL) activity of nine defatted Prunus seeds was compared for catalyzing the addition of HCN to aromatic, heteroaromatic and α,β-unsaturated aldehydes. Although the conversion and enantiomeric excess (ee) of the corresponding cyanohydrins were both influenced by the HNL source and the chemical structure of the aldehyde, Prunus HNLs were all suitable for the enantioselective preparation of cyanohydrins.  相似文献   

16.
NADPH-dependent alkenal/one oxidoreductase (AOR) from the rat is a phase 2/antioxidative enzyme that is known to catalyze the reduction of the carbon-carbon double bond of alpha,beta-unsaturated aldehydes and ketones. It is also known for its leukotriene B(4) 12-hydroxydehydrogenase activity. In order to begin to understand these dual catalytic activities and validate its classification as a reductase of the medium-chain dehydrogenase/reductase family, an investigation of the mechanism of its NADPH-dependent activity was undertaken. Recombinant AOR and a 3-nonen-2-one substrate were used to perform steady-state initial velocity, product inhibition, and dead end inhibition experiments, which elucidated an ordered Theorell-Chance kinetic mechanism with NADPH binding first and NADP(+) leaving last. A nearly 20-fold preference for NADPH over NADH was also observed. The dependence of kinetic parameters V and V/K on pH suggests the involvement of a general acid with a pK of 9.2. NADPH isomers stereospecifically labeled with deuterium at the 4-position were used to determine that AOR catalyzes the transfer of the pro-R hydride to the beta-carbon of an alpha,beta-unsaturated ketone, illudin M. Two-dimensional nuclear Overhauser effect NMR spectra demonstrate that this atom becomes the R-hydrogen at this position on the metabolite. Using [4R-(2)H]NADPH, small primary kinetic isotope effects of 1.16 and 1.73 for V and V/K, respectively, were observed and suggest that hydride transfer is not rate-limiting. Atomic absorption spectroscopy indicated an absence of Zn(2+) from active preparations of AOR. Thus, AOR fits predictions made for medium-chain reductases and bears similar characteristics to well known medium-chain alcohol dehydrogenases.  相似文献   

17.
18.
P1-zeta-crystallin (P1-ZCr) is an oxidative stress-induced NADPH:quinone oxidoreductase in Arabidopsis thaliana, but its physiological electron acceptors have not been identified. We found that recombinant P1-ZCr catalyzed the reduction of 2-alkenals of carbon chain C(3)-C(9) with NADPH. Among these 2-alkenals, the highest specificity was observed for 4-hydroxy-(2E)-nonenal (HNE), one of the major toxic products generated from lipid peroxides. (3Z)-Hexenal and aldehydes without alpha,beta-unsaturated bonds did not serve as electron acceptors. In the 2-alkenal molecules, P1-ZCr catalyzed the hydrogenation of alpha,beta-unsaturated bonds, but not the reduction of the aldehyde moiety, to produce saturated aldehydes, as determined by gas chromatography/mass spectrometry. We propose the enzyme name NADPH:2-alkenal alpha,beta-hydrogenase (ALH). A major portion of the NADPH-dependent HNE-reducing activity in A. thaliana leaves was inhibited by the specific antiserum against P1-ZCr, indicating that the endogenous P1-ZCr protein has ALH activity. Because expression of the P1-ZCr gene in A. thaliana is induced by oxidative stress treatments, we conclude that P1-ZCr functions as a defense against oxidative stress by scavenging the highly toxic, lipid peroxide-derived alpha,beta-unsaturated aldehydes.  相似文献   

19.
Carbonyl compounds, which are naturally produced and augmented under oxidative stress, have deleterious effects on the reproductive system. The aldo-keto reductase (AKR) family of enzymes catalyze the reductive detoxification of various carbonyl compounds in an NADPH-dependent manner. To elucidate involvement of AKR in detoxification of endogenously produced carbonyls in the male reproductive system, we investigated the differential expression and tissue localization of aldehyde reductase (ALR) and protein adducts produced by reaction with lipid peroxidation products. A strong immunoreactivity to an anti-ALR antibody was observed in the epithelia of the epididymis, vas deferens, seminal vesicle, and prostate gland. Virtually the same cells were stained with a monoclonal antibody (mAb) 5F6, raised against an acrolein-modified protein. In the testis, however, mAb5F6 specifically stained the nuclei of somatic cells and less differentiated spermatogenic cells. While acrolein inactivated glutathione reductase, an enzyme involved in recycling oxidized glutathione, AKR activity was affected at the high concentration only. The colocalization of lipid peroxidation products and AKR in the epithelia of the male genital tract indicates that these tissues are exposed to oxidative stress and possess a protective system coordinately.  相似文献   

20.
Human brain contains multiple forms of aldehyde-reducing enzymes. One major form (AR3), as previously shown, has properties that indicate its identity with NADPH-dependent aldehyde reductase isolated from brain and other organs of various species; i.e., low molecular weight, use of NADPH as the preferred cofactor, and sensitivity to inhibition by barbiturates. A second form of aldehyde reductase ("SSA reductase") specifically reduces succinic semialdehyde (SSA) to produce gamma-hydroxybutyrate. This enzyme form has a higher molecular weight than AR3, and uses NADH as well as NADPH as cofactor. SSA reductase was not inhibited by pyrazole, oxalate, or barbiturates, and the only effective inhibitor found was the flavonoid quercetine. Although AR3 can also reduce SSA, the relative specificity of SSA reductase may enhance its in vivo role. A third form of human brain aldehyde reductase, AR2, appears to be comparable to aldose reductases characterized in several species, on the basis of its activity pattern with various sugar aldehydes and its response to characteristic inhibitors and activators, as well as kinetic parameters. This enzyme is also the most active in reducing the aldehyde derivatives of biogenic amines. These studies suggest that the various forms of human brain aldehyde reductases may have specific physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号