首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
El-Shahat KH  Kandil M 《Theriogenology》2012,77(8):1513-1518
The present study was designed to evaluate the changes in the concentrations of different antioxidants, such as glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), in the follicular fluid collected from different follicular size categories in relation to stage of estrous cycle in buffaloes. In addition, malondialdehyde (MDA) as an indicator for lipid peroxidation was also estimated. Fifty pairs of buffalo ovaries were collected from a local slaughterhouse. Based on ovarian structures, the cycle was divided into follicular and luteal phase. The follicles on each pair were classified into three groups; small (≤3 mm), medium (4-9 mm) and large (≥10 mm). The concentrations of SOD, CAT, GSH, and GR in the follicular fluid of each group as well as MDA were estimated. Results indicated that there was a significant decrease (P < 0.05) in the average numbers of small follicles obtained at the follicular phase than those obtained at the luteal phase of the cycle. However, the mean numbers of the large sized follicles was significantly increased (P < 0.05) in the follicular phase than in the luteal phase. Large follicles obtained at the luteal phase had a significantly higher (P < 0.05) concentration of GSH than that obtained from small ones. A significant (P < 0.05) effect of follicular size on GR concentrations was observed. The concentration of SOD tended to be higher in large follicles obtained at the follicular phase than that collected at the luteal phase (56.7 ± 3.7 vs. 28.1 ± 6.7 U/mL, respectively). On the contrary, a significantly higher concentration (P < 0.05) of SOD was recorded in small follicles as compared with medium and large follicles collected at the luteal phase. CAT concentrations did not significantly differ among different follicular sizes between follicular and luteal phases as well as within each phase. Malondialdehyde concentration was significantly decreased (P < 0.05) in the follicular fluid obtained from small follicles collected at the follicular phase compared with those obtained at the luteal phase. In conclusion, the present study showed that the concentrations of enzymatic antioxidants except for CAT vary according to the follicle size and the stage of the estrous cycle suggesting their possible role in the process of follicular development during estrous cycle in buffaloes.  相似文献   

2.
Ovarian acyclicity is one of the most important causes of infertility in water buffalo. Recent studies have indicated alterations in the composition of follicular fluid during the condition. The aim of this study was to determine the changes in follicular fluid concentrations of estradiol, progesterone and insulin during ovarian acyclicity in water buffalo. Ovaries were collected from 50 acyclic and 95 cyclic (control) buffaloes and follicular fluid was aspirated from small (5.0-6.9 mm), medium (7.0-9.9 mm) and large (≥10.0 mm) sized follicles. Estradiol concentration was lower (P<0.0001) in acyclic (1.4 ± 0.09 ng/ml) than in cyclic (3.3 ± 0.18 ng/ml) buffaloes. Regardless of the ovarian cyclic status, there was an increase (P<0.01) in estradiol concentration with the increase in follicle size; the mean concentrations were 2.4 ± 0.16 ng/ml, 2.8 ± 0.29 ng/ml and 3.5 ± 0.41 ng/ml in small, medium and large follicles, respectively. A higher (P<0.001) progesterone concentration was recorded in acyclic (24.3 ± 2.61 ng/ml) compared to the cyclic (7.6 ± 0.79 ng/ml) group. Furthermore, acyclic buffaloes had a lower (P<0.05) concentration of insulin in the follicular fluid than that of cyclic buffaloes (15.2 ± 1.55 μIU/ml versus 25.9 ± 2.78 μIU/ml, respectively). In conclusion, acyclic buffaloes have lower concentrations of estradiol and insulin concurrent with higher concentrations of progesterone in the follicular fluid. These hormonal changes in the follicular microenvironment are possibly a manifestation of the disturbances in the normal follicular development leading to anovulation and anestrus in acyclic buffaloes.  相似文献   

3.
Taneja M  Singh G  Totey SM  Ali A 《Theriogenology》1995,44(4):581-597
The ovaries of 12 buffalo were examined daily by ultrasound beginning at Day 3 of the estrous cycle, followed by superovulation between Days 10 and 13 of the cycle. The buffalo were divided into 2 groups on the basis of the presence (dominant, n = 7) or absence (nondominant, n = 5) of a dominant follicle at the start of superovulation. Daily ultrasonographic observations of the ovaries were recorded on a videotape and were used to assess the progression of both the large (dominant) follicle and the next-to-the-large (subdominant) follicle as well as the numbers of follicles in the small (4 to 6 mm), medium (7 to 10 mm), and large (>10 mm) size categories, before and during the superovulation treatment. A greater number of small size (P < 0.05) follicles was available before the start of the superovulatory treatment in the buffalo superovulated in the absence of a dominant follicle. The turnover of follicles from medium to large size classes also occurred sooner (P < 0.01), and was of higher magnitude (P < 0.01) during treatment in buffalo of the nondominant follicle group. The number of corpora lutea at palpation per rectum was higher (P < 0.05) in buffalo of the nondominant than the dominant group (4.6 +/- 0.6 vs 2.7 +/- 0.5). However, there was no significant difference among the groups in the means of serum progesterone concentration (3.6 +/- 1.3 vs 2.2 +/- 0.6 ng/ml), total number of embryos (2.0 +/- 0.6 vs 1.1 +/- 0.7), transferable embryos (1.6 +/- 0.5 vs 1.0 +/- 0.6) and unfertilized ova recovered (0.4 +/- 0.2 vs 0) on Day 6. It is concluded that in buffalo, the superovulatory response could possibly be improved by ultrasongraphic observation of the status of follicular dominance prior to treatment.  相似文献   

4.
The objective of this study was to monitor and compare follicle populations and follicular development in pregnant and nonpregnant sows from Day 3 to Day 20 after breeding. Twenty-four sows were paired within parity on the day of artificial insemination and were randomly allocated within pair for insemination with either killed (n=12) or live spermatozoa (n=12). All the sows were artificially inseminated with the pooled ejaculate of the same boar. From Day 3 through Day 20 post estrus, ovarian follicles were scanned daily by ultrasonography. Ultrasound images were recorded on videotape and were retrospectively analyzed. Follicles were mapped to indentify the existence of follicular waves. The follicles were then classified as small (< 3 mm), medium (3-5 mm), or large (>/=5 mm). Pregnancy diagnosis was performed on Day 21 by ultrasonography. Pregnant sows maintained a constant proportion of the follicle population in the small, medium and large follicle categories. However, in the nonpregnant sows, the proportion of follicles in the various size categories remained constant until Day 15. Thereafter, the proportion of small follicles decreased (P < 0.05) from Day 15 to 20, and the proportions of medium and large follicles increased (P < 0.05). The predictability of pregnancy status on Day 20 based on follicle populations in any of the 3 follicle categories was low. Moreover, there was no evidence of follicular waves during the estrous cycle or early pregnancy. In conclusion, the proportion of small follicles decreased while medium and large follicle increased from Day 15 through Day 20 of the estrous cycle, but not during a similar stage of pregnancy. This latter finding concurs with follicle recruitment from the pool of small follicles for ovulation following PGF2alpha secretion to induce luteolysis, which reduces progesterone concentrations and thereby allows for the stimulation of the pool of small follicles by gonadotropins.  相似文献   

5.
Experiments were carried out to investigate the effects of varying physiological concentrations (0, 10, 100, and 1000 ng ml−1) of oestradiol or testosterone on [3H]-thymidine incorporation by porcine granulosa and theca cells in vitro. Granulosa cells only were recovered from small (1–3-mm) follicles and both granulosa and theca cells recovered from large (4–8-mm) porcine follicles. Cells were cultured for 72 h in medium containing 10% foetal calf serum, 24 h in serum-free medium, and finally 40 h in serum-free medium containing [3H]-thymidine and appropriate steroid treatment. Although DNA per well was significantly higher (P < 0.05) at the end of culture in the theca cells than in the granulosa cells, neither steroid treatment had a significant (P > 0.1) effect on DNA concentration in either cell type. Overall, cells from small follicles incorporated significantly (P < 0.01) more [3H]-thymidine than those from medium follicles. Both oestradiol and testosterone significantly (P < 0.01) inhibited thymidine incorporation by cells from both follicle size categories, with a significant (P < 0.05) hormone × dose interaction. Finally, there was a highly significant (P < 0.001) interaction between the response of cells to different hormone concentrations and the follicle size from which they were recovered. These results indicate that both oestradiol and testosterone may act in an autocrine/paracrine manner to inhibit proliferation and encourage differentiation in follicular cells and thus are likely regulators of the later stage of antral follicle development in the pig.  相似文献   

6.
The growth, selection, regression and ovulation of ovarian follicles was ultrasonically monitored in 30 Murrah buffalo throughout a spontaneous estrous cycle during the breeding season (autumn). Examinations revealed that follicular growth during the estrous cycle occurs in waves; the buffalo showed 1-wave (3.3%, n = 1), 2-wave (63.3%, n = 19) or 3-wave (33.3%, n = 10) follicular growth. The first wave began at 1.00, 1.16 +/-0.50 and 1.10 +/- 0.32 d in buffalo with 1, 2 and 3 waves, respectively (ovulation = Day 0). The second wave appeared at 10.83 +/- 1.09 and 9.30 +/- 1.25 d (P < 0.01) for the 2 and 3 wave cycle animals, respectively. The third wave started at 16.80 +/- 1.22 d. Structural persistence of the first dominant follicle was longer in the 2- than 3-wave cycles (20.67 +/- 1.18 vs 17.90 +/- 3.47 d ; P < 0.05). The duration of the growth and static phases of the first dominant follicle differed between the 2 and 3 wave cycles (P < 0.05), whereas there were no differences in linear growth rates (cm/d). Two and three wave cycles differed (P < 0.05) with respect to the maximum diameter of both the first dominant follicle (1.51 +/- 0.24 vs 1.33 +/- 0.18 cm) and the ovulatory follicles (1.55 +/- 0.16 vs 1.34 +/- 0.13 cm). No relationship was found between dominant follicle development and the presence of either a CL or a previous dominant follicle in either ovary. Two and three wave cycles also differed with respect to the mean length of intervals between ovulation (22.27 +/- 0.89 vs 24.50 +/- 1.88 d; P < 0.01) and the mean length of luteal phases (10.40 +/- 2.11 vs 12.66 +/- 2.91 d; P < 0.05). These results demonstrate that buffalo have estrous cycles with 1, 2 or 3 follicular waves; that 2-wave cycles are the most common; and that the number of waves in a cycle is associated with the luteal phase and with estrous cycle length.  相似文献   

7.
The objective was to determine ovarian follicular fluid concentrations of glucose, lactate, and pyruvate in relation to follicle size in buffalo and sheep. The effect of varying concentrations of these substances on in vitro oocyte maturation, oocyte protein content, and granulosa and cumulus cell growth was also investigated. Follicular fluid was aspirated from various sizes of follicles (from ovaries without a dominant follicle) collected from adult, cycling nonpregnant buffalo (Bubalus bubalis) and sheep (Ovis aries) during the breeding season. Overall, mean (+/-S.E.M.) concentrations (mM) were glucose 2.42+/-0.31 and 1.40+/-0.22, lactate 7.56+/-2.61 and 10.42+/-1.64, and pyruvate 0.02+/-0.01 and 0.002+/-0.00, in buffalo and sheep, respectively. In both species, as follicles became larger, concentrations of glucose significantly increased, lactate significantly decreased, but pyruvate was not affected. Oocyte maturation was higher (P<0.05) in medium containing supra-physiological concentrations of either glucose (5 mM), or pyruvate (10 mM) alone, or physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub- or supra-physiological concentrations of glucose, lactate and pyruvate in combination (both species). The protein content of oocytes was not significantly affected by the concentration of glucose, lactate, and pyruvate in the maturation medium. However, growth of granulosa and cumulus cells was higher (P<0.05) in medium containing supra-physiological concentrations of glucose (5 mM) alone, or pyruvate (10 mM) alone, or physiological, or supra-physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub-physiological concentrations of glucose, lactate and pyruvate in combination (both species). In conclusion, concentrations of glucose, pyruvate and lactate in the medium had cell type-specific effects on oocyte maturation, and on growth of granulosa and cumulus cells. Furthermore, glucose and pyruvate were the principal energy sources for oocytes and follicular somatic cells in buffalo and sheep.  相似文献   

8.
To characterize the pulsatile secretion of LH and FSH and their relationships with various stages of follicular wave development (follicles growing from 3 to > or =5 mm) and formation of corpora lutea (CL), 6 Western white-faced ewes underwent ovarian ultrasonography and intensive blood sampling (every 12 min for 6 h) each day, for 10 and 8 consecutive days, commencing 1 and 2 d after estrus, respectively. Basal serum concentrations of LH and LH pulse frequency declined, whereas LH pulse duration and FSH pulse frequency increased by Day 7 after ovulation (P<0.05). LH pulse amplitude increased (P<0.05) at the end of the growth phase of the largest ovarian follicles in the first follicular wave of the cycle. The amplitude and duration of LH pulses rose (P<0.05) 1 d after CL detection. Mean and basal serum FSH concentrations increased (P<0.05) on the day of emergence of the second follicular wave, and also at the beginning of the static phase of the largest ovarian follicles in the first follicular wave of the cycle. FSH pulse frequency increased (P<0.05) during the growth phase of emergent follicles in the second follicle wave. The detection of CL was associated with a transient decrease in mean and basal serum concentrations of FSH (P<0.05), and it was followed by a transient decline in FSH pulse frequency (P<0.05). These results indicate that LH secretion during the luteal phase of the sheep estrous cycle reflects primarily the stage of development of the CL, and only a rise in LH pulse amplitude may be linked to the end of the growth phase of the largest follicles of waves. Increases in mean and basal serum concentrations of FSH are tightly coupled with the days of follicular wave emergence, and they also coincide with the end of the growth phase of the largest follicles in a previous wave, but FSH pulse frequency increases during the follicle growth phase, especially at mid-cycle.  相似文献   

9.
The present study aimed to determine systemic and local effects of corpora lutea (CL), on follicular dynamics throughout the estrous cycle. All follicles >or=2 mm and CL were assessed by daily transrectal ultrasonography in 12 West African ewes. Blood samples were collected to determine plasma concentration of progesterone. Fifteen estrous cycles were evaluated with a mean interovulatory interval of 16.8+/-0.2 days. Two (13.3%), 10 (66.7%) and 3 (20%) of the estrous cycles had 2, 3 and 4 waves of follicular development, respectively. In sheep with three waves of follicular development, both the length of growing phase and the growth rate of dominant follicles from midluteal wave II were diminished (3.4+/-0.3 days, P<0.0001, and 0.4+/-0.1 mm/day, P<0.01, respectively) when compared to follicles from early luteal phase (wave I, 4.1+/-0.2 days, and 0.7+/-0.1 mm/day) or late luteal phase (wave III, 6.3+/-0.4 mm and 0.6+/-0.1 mm/day). The diameter of the dominant follicle was smaller during the midluteal phase (3.9+/-0.1 mm, P<0.0001) than in the early and late luteal phase (5.0+/-0.2 and 5.7+/-0.2 mm; respectively). The effect of the dominant follicle was less during midluteal phase, because number of accompanying smaller follicles was fewer (P<0.01) in waves I and III (6.3+/-0.9 compared with 3.4+/-0.8 and 2.3+/-0.7). The number of follicles was also different between ovaries that had CL and those that did not. The total number of large follicles during the luteal phase was less in ovaries with CL (0.9+/-0.5 compared with 2.7+/-0.3; P<0.01), as was the mean daily number of both large (0.1+/-0.02 compared with 0.2+/-0.02; P<0.001) and total number of follicles >or=2 mm (2.5+/-0.1 compared with 3.3+/-0.1; P<0.01). Current results indicate that the presence of a functional CL may exert both systemic and local effects on the population of follicles, affecting the dominance exerted by large follicles.  相似文献   

10.
Adiponectin and its receptors (AdipoR1 and AdipoR2) are novel endocrine systems that act at various levels to control male and female fertility. The aim of this study was to determine whether adiponectin and its receptors gene expression levels differ between dominant follicle (DF) and atretic follicle (AF) and also between oocytes which were stained positively and negatively with brilliant cresyl blue (BCB(+) and BCB(-)). Based on estradiol/progesterone ratio, follicles from ovaries were classified as AFs and DFs. The stages of estrous cycle (follicular or luteal phases) were defined by macroscopic observation of the ovaries and the uterus. Oocytes were stained with BCB for 90 min. The relative expression of adiponectin, AdipoR1 and AdipoR2 mRNA in theca and cumulus cells and oocytes of different follicles were determined by quantitative real time PCR. Adiponectin and its receptors genes were clearly expressed higher (P<0.05) in theca and cumulus cells and oocytes of DFs than those of AFs during the follicular and luteal phases. BCB(+) oocytes showed a higher (P<0.05) expression of adiponectin and its receptors compared with their BCB(-) counterparts. Positive correlation (r>0.725, P<0.001) was observed between adiponectin mRNA level in ovarian cells of DFs and follicular fluid E2 concentration in follicular phase. Adiponectin mRNA abundance in ovarian cells of AFs showed a significant negative correlation with follicular fluid progesterone concentration in follicular and luteal phases (r<-0.731, P<0.001). This work has revealed the novel association of adiponectin and its receptors genes with follicular dominance and oocyte competence, thereby opening several new avenues of research into the mechanisms of dominance and competence in animal and human.  相似文献   

11.
Scottish Blackface ewes in high body condition (mean score = 2.86) had a higher mean ovulation rate (1.8 v. 0.9; P < 0.05) and more large (⪖ 4 mm diameter) follicles (4.6 v 2.2; P < 0.05) than ewes in low condition (mean score = 1.84) but similar numbers of small (1–4 mm diameter) follicles (6.3 v 6.0; NS). There was little difference in LH profiles with body condition but FSH and prolactin concentrations were significantly greater, during both luteal and follicular phases of the cycle, in ewes in high condition.Despite the relationships between body condition and ovulation rate and between condition and hormone concentrations, within the high condition groups, there was no significant difference in FSH levels with ovulation rate. Prolactin levels were higher in ewes with a single ovulation than in ewes with two or three ovulations. There was a trend towards a higher mean LH pulse frequency in the luteal phase and a higher mean LH pulse amplitude in the follicular phase in ewes with multiple ovulations compared with ewes with a single ovulation. During oestrus, only circulating prolactin concentrations differed with body condition, being significantly higher in ewes in high condition, but mean LH concentrations were higher and FSH concentrations lower in ewes with multiple ovulations. Subsequent luteal function, as measured by circulating progesterone concentrations, was normal in all ewes. It is concluded that body condition affected the size of the large follicle (⪖ 4 mm diameter) population through changes in FSH and possibly pulsatile LH secretion and prolactin secretion during the luteal and follicular phases of the cycle and that the number of follicles that were potentially ovulatory was probably determined during the luteal phase of the cycle. However, their ability to undergo the final stages of development and to ovulate may be related to the amount of LH secreted during the follicular phase.  相似文献   

12.
Previous studies demonstrated that waves of follicular activity develop approximately every 9 d in cattle during the estrous cycle and early pregnancy. A dominant follicle develops from each wave and the remaining follicles (subordinates) begin to regress after a few days. In this study, intraovarian luteal and follicular interrelationships were examined during the follicular waves of the estrous cycle and pregnancy using data obtained by ultrasonography. During the estrous cycle, no intraovarian relationships were found between the ovary containing the corpus luteum and the ovary containing the dominant follicle (n = 165), or between the location of the corpus luteum and the characteristics of the dominant follicle. During pregnancy, however, the frequency distribution for the number of follicular waves with the dominant follicle and corpus luteum on the same or opposite ovaries differed (P<0.05) among Waves 1 to 10. The two structures (dominant follicle and corpus luteum) were more often in opposite ovaries during Waves 3 to 10 (combined frequency, 75%) than during Waves 1 and 2. During pregnancy, dominant follicles of consecutive waves differed (P<0.05) among Waves 1 to 8 in the frequency with which they appeared in the same versus the opposite ovary. The difference seemed primarily due to an increased frequency of consecutive follicles on the same ovary for Waves 4 to 8 (combined frequency, 80%). During both the estrous cycle and pregnancy, there was no significant intraovarian effect of the dominant follicle on the day of detection of the next dominant follicle, on the growth rate of the largest subordinate follicle, or on the length of the interval from wave origin to cessation of growth of the largest subordinate; these results indicate that previously postulated suppressive effects between follicles are exerted through systemic channels.  相似文献   

13.
Most estrous cycles in cows consist of 2 or 3 waves of follicular activity. Waves of ovarian follicular development comprise the growth of dominant follicles some of which become ovulatory and the others are anovulatory. Ovarian follicular activity in cows during estrous cycle was studied with a special reference to follicular waves and the circulating concentrations of estradiol and progesterone. Transrectal ultrasound examination was carried out during 14 interovulatory intervals in 7 cows. Ovarian follicular activity was recorded together with assessment of serum estradiol and progesterone concentrations. Three-wave versus two-wave interovulatory intervals was observed in 71.4% of cows. The 3-wave interovulatory intervals differed from 2-wave intervals in: 1) earlier emergence of the dominant follicles, 2) longer in length, and 3) shorter interval from emergence to ovulation. There was a progressive increase in follicular size and estradiol production during growth phase of each wave. A drop in estradiol concentration was observed during the static phase of dominant anovulatory follicles. The size of the ovulatory follicle was always greater and produced higher estradiol compared with the anovulatory follicle. In conclusion, there was a predominance of 3-wave follicular activity that was associated with an increase in length of interovulatory intervals. A dominant anovulatory follicle during its static phase may initiate the emergence of a subsequent wave. Follicular size and estradiol concentration may have an important role in controlling follicular development and in determining whether an estrous cycle will have 2 or 3-waves.  相似文献   

14.
Two experiments were conducted to test the hypothesis that there are dynamic changes in follicular blood flow during follicular deviation and that nitric oxide (NO) in follicular fluid (FF) plays a role in regulation of follicular blood flow. In Experiment I, follicular blood flow of the two largest follicles was monitored by using Power Doppler ultrasonography during follicular deviation in sixteen follicular waves during eight estrous cycles in eight cows. Blood flow did not differ (P>0.05) between the dominant follicle (DF) and the largest subordinate follicle (SF) until the beginning of the deviation of the follicular size, but was higher (P<0.05) in DF than in the largest SF one and two days after the beginning of diameter deviation in ovulatory (n=5) and atretic (n=11) waves; respectively. In Experiment II, FF was aspirated from DF and the largest SF on the day of diameter deviation (DF, n=6; SF, n=6) and two days later (DF, n=12; SF, n=9). Nitric oxide did not differ (P>0.05) between DF and the largest SF on the day of diameter deviation but, one or two days after observed diameter deviation NO concentrations were lower (P<0.01) in DF compared to the largest SF. On the day of diameter deviation and two days later E2 levels in FF were higher (P<0.01) in DF than in the largest SF. P4 concentrations in FF were higher (P<0.05) in DF than in the largest SF on the day of diameter deviation, but did not (P>0.05) differ two days later. E2/P4 ratio in FF was the same (P>0.05) in DF and the largest SF on the day of diameter deviation, but was higher (P<0.01) in DF than in the largest SF one or two days later. In conclusion, area of follicular blood flow of DF and the largest SF increased in parallel with follicular size during follicular deviation. Furthermore, there were relationships between changes in follicular blood flow, NO concentrations and E2/P4 ratio in FF following the beginning of diameter deviation in cattle.  相似文献   

15.
Eight hundred and seven bovine antral follicles from 2 mm to 20 mm in diameter were dissected free of stromal tissue, measured, qualified and divided into 36 groups according to size, quality and stage of cycle. The follicular fluid was collected and assayed by RIA for oestradiol-17beta, testosterone and progesterone. The steroid hormone concentrations vary with follicular size, degree of atresia and stage of the cylce. Non-atretic follicles of less than 8 mm are generally androgen-dominated and non-atretic follicles of more than 11 mm are oestrogen-dominated. Follicles betwen 8 mm and 11 mm are intermediate in this respect. Degeneration leads to a gradual decrease of oestradiol-17beta and testosterone concentration and increase of progesterone. It is suggested that the ratio of oestradiol-17beta/testosterone and oestradiol- 17beta/progesterone and oestradiol-17beta/testosterone + progesterone cannot generally be used to discriminate between non-atretic and atretic follicles. Large follicles present during the early luteal stage contain as much oestradiol-17beta in the follicular fluid as large follicles during the follicular stage, whereas large follicles of the luteal stage contain only 15% of the maximal amount of the latter's. This and other presented data support the statement that follicles present during the early luteal, late luteal and follicular stages of the cycle belong to different groups of growing follicles. It has been concluded that groups of macroscopically qualified follicles can be distinguished from each other by the steroid hormone concentration in the follicular fluid. It is therefore possible to predict the hormonal environment of the oocyte in any individual follicle of a defined size and quality.  相似文献   

16.
The pattern of ovarian follicle development in maiden cyclic lambs was characterized using the definition of a follicle wave as the changes in the number of follicles among the days of the estrous cycle, as originally defined in cattle by Rajakoski in 1960. We also examined the steroid content relationships among follicles on Days 5 (Wave 1) and 14 (Waves 2 and 3) of the estrous cycle. In Experiment 1, the ovaries of 20 cyclic lambs (40 to 45 kg) were examined daily using transrectal ultrasonography for 1 or 2 estrous cycles (n = 31 cycles). The number of small (2 and 3 mm in diameter), medium (4 and 5 mm) and large (> or = 6 mm) follicles were aligned with the beginning and end of the average length estrous cycle and then compared among days. Identified follicles were defined as those that grew to > or = 4 mm and remained at > or = 3 mm for > or = 3 d. The number of identified follicles emerging (retrospectively identified at 2 or 3 mm) per ewe per day was also aligned with the average length estrous cycle. In Experiment 2, ewe lambs were ovariectomized on Day 5 (n = 6) or 14 (n = 5) of the estrous cycle, then follicle diameters and follicular fluid concentrations of estradiol and progesterone were compared among follicles. Data were analyzed by repeated measures ANOVA and compared among days using Fisher's LSD. In Experiment 1, either 2 (n = 10 cycles), 3 (n = 20 cycles) or 4 (n = 1 cycle) periods of emergence of identified follicles occurred during individual cycles, with estrous cycle lengths of 15.6 +/- 1.6, 16.1 +/- 1.1 and 17 d respectively. In animals with 2 or 3 periods of emergence of identified follicles, the total number of small, medium and large follicles differed (P < 0.05) among days of the estrous cycle showing a wave-like pattern. In Experiment 2, a single follicle collected on each of Days 5 and 14 of the cycle (6.2 +/- 0.2 and 3.9 +/- 0.2 mm in diameter) had a higher (P < 0.05) concentration of follicular fluid estradiol (36.2 +/- 4.4 and 50.9 +/- 21.6 ng/mL) than other follicles collected on the same day (next largest follicle: 4.3 +/- 0.3 and 3.5 +/- 0.4 mm; 4.3 +/- 0.9 and 18.2 +/- 6.7 ng/mL estradiol). The results showed that 1) there was a synchronous emergence of follicles associated with fluctuations in the number and size of follicles during the estrous cycle; 2) within a wave there was a hierarchy among follicles for diameter and steroid content; 3) ovarian follicle growth in ewe lambs occurred in 2 or 3 organized waves during the estrous cycle.  相似文献   

17.
Influence of the dominant follicle on oocytes from subordinate follicles   总被引:4,自引:0,他引:4  
Hagemann LJ 《Theriogenology》1999,51(2):449-459
As the oocyte grows within the follicle, a number of factors influence its health and developmental competence. These factors include follicle size, day of estrous cycle, level of atresia and influence of other follicles such as the dominant follicle. Follicles were dissected from ovaries of synchronized dairy cows on four days during the estrous cycle, and the oocyte from each follicle collected, matured, fertilized and cultured singly until Day 8. Development to blastocyst was greater in oocytes collected during phases of follicular growth than those collected during phases of follicular dominance (P<0.001) over all follicle size categories. Oocyte competence tended to increase with increasing follicle size (P<0.1). Follicular cells analyzed by flow cytometry showed an increase in proportion of apoptotic cells in subordinate follicles during the dominant phase compared to growth phase (P<0.05). Thus, the dominant follicle on both oocyte competence and levels of atresia. Further studies on the effect of dominance has shown that lactate production in cumulus-oocyte-complexes (COCs) from medium-sized follicles collected during a dominance phase and small follicles collected during a growth phase are no different from other follicles, despite having significantly lower uptake of glucose (P<0.1). Thus, COCs from different follicle subclasses differ in their nutrient requirements, and current IVM technology needs further improvement to better assist those oocytes that are developmentally challenged.  相似文献   

18.
The reproductive tracts of 13 mature hinds were examined daily by transrectal ultrasonography and blood samples were taken daily from October to January to characterize follicular, luteal, and endocrine dynamics in wapiti during the estrous season. Follicle development occurred in waves characterized by regular, synchronous development of a group of follicles in temporal succession to a surge in serum FSH concentration. The mean interovulatory interval was 21.3 +/- 0.1 d, but was shorter in hinds exhibiting two follicular waves than in hinds exhibiting three and four waves (P < 0.05). The interwave interval was similar among waves in two-wave cycles and the first wave of three-wave cycles. All other interwave intervals in three- and four-wave cycles were shorter (P < 0.05). The maximum diameter of the dominant follicle of the first wave was similar among two-, three-, and four-wave cycles. For all other waves in three- and four-wave cycles, the maximum diameter was smaller (P < 0.05). Corpus luteum diameter and plasma progesterone concentrations were similar between two- and three-wave cycles, but the luteal phase was longer (P < 0.05) in four-wave cycles. The dominant follicle emerged at a diameter of 4 mm at 0.4 +/- 0.1 and 0.8 +/- 0.1 d before the largest and second largest subordinate follicles, respectively. The follicle destined to become dominant was larger (P < 0.05) than the largest subordinate follicle one day after emergence, which coincided with the first significant decrease in serum FSH concentration. We concluded that the estrous cycle in wapiti is characterized by two, three, or four waves of follicular development (each preceded by a surge in circulating FSH), that there is a positive relationship between the number of waves and the duration of the cycle, and an inverse relationship between the number of waves and the magnitude of follicular dominance (diameter and duration of the dominant follicle).  相似文献   

19.
Transrectal ovarian ultrasonographic studies have shown that, in cattle, follicular wave emergence is associated with a large increase in the number of small antral follicles (4-6mm in diameter); an analogous association has not been found for small follicles (2-3mm in diameter) in the ewe. In previous studies in ewes, accurate assessment of the number of follicles has been limited to follicles > or =2 or 3mm in size. Newer, high-resolution equipment allowed us to identify follicles > or =0.4mm and to quantify all antral follicles > or =1mm in diameter in seven cyclic Western White Face ewes. This allowed us to expand the small follicle pool examined, from 1 to 4 follicles/day (2-3.5mm in diameter) in earlier studies, to 8-18 follicles/day (1-3mm in diameter). Total number of small follicles (> or =1 and < or =3mm in diameter) increased between Days -1 and 0 (Day 0=day of ovulation), and declined between Days 1 and 3 (P<0.05). There were no significant changes in the number of small or medium (4mm in diameter) follicles around days of follicle wave emergence (+/-2 days). The 1-3 follicles in the 2-3mm size range, which constituted a follicle wave (i.e. grew to > or =5mm in size before regression or ovulation), were the only small follicles to emerge in an orderly succession during the estrous cycle, approximately every 3-5 days. Thus, unlike in cattle, there is no apparent increase in numbers of small follicles at follicle wave emergence in cyclic sheep, and little evidence for selection of recruited follicles and follicular dominance.  相似文献   

20.
The objective was to determine the in vitro developmental competence of buffalo oocytes collected from abattoir-derived ovaries at various stages of the estrous cycle and follicular status. In Experiment 1, ovaries (n=476 pairs) were collected and divided into the following five groups: (a) ovaries with a corpus hemorragicum and no dominant follicle (CH-NO-DF); (b) ovaries with a mature functional corpus luteum (CL) and a dominant follicle (CL-DF); (c) ovaries with a mature functional CL and no dominant follicle (CL-NO-DF); (d) ovaries with a regressing CL and a dominant follicle (RCL-DF); and (e) ovaries without any luteal structures and only small follicles (ANEST). In Experiment 2, 144 pairs of ovaries with a CL (or regressing CL) and a dominant follicle were collected and follicles were classified as dominant, largest subordinate, and subordinate. In both experiments, the dominant follicle was defined as any follicle >10mm in diameter that exceeded the diameter of all other (subordinate) follicles. Although oocytes were collected from each group of ovaries, only Grades A or B oocytes were used for in vitro embryo production. Cleavage rates were higher (P<0.05) from oocytes collected from ovaries in the CH-NO-DF (59.6%) and CL-NO-DF (59.2%) groups than those collected from CL-DF (52.2%) and ANEST (43.6%) groups. The yield of transferable embryos was higher (P<0.05) from oocytes collected from CH-NO-DF (27.4%) and CL-NO-DF (24.0%) ovaries than from CL-DF (16.2%), RCL-DF (15.4%), and lowest (P<0.05) from ANEST (8.8%). In Experiment 2, oocytes from the dominant follicle had a higher (P<0.05) cleavage rate (65.2 %) and transferable embryo yield (30.2%) than those collected from the largest subordinate and subordinate follicles. In conclusion, oocyte competence depended on the morphofunctional state of ovaries. Oocyte development was maximal in pairs of ovaries with a corpus hemorragicum or CL and no dominant follicle; in paired ovaries with a CL and a dominant follicle, development was maximal in oocytes derived from the dominant follicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号