首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decitabine, an epigenetic modifier that reactivates genes otherwise suppressed by DNA promoter methylation, is effective for some, but not all cancer patients, especially those with solid tumors. It is commonly recognized that to overcome resistance and improve outcome, treatment should be guided by tumor biology, which includes genotype, epigenotype, and gene expression profile. We therefore took an integrative approach to better understand melanoma cell response to clinically relevant dose of decitabine and identify complementary targets for combined therapy. We employed eight different melanoma cell strains, determined their growth, apoptotic and DNA damage responses to increasing doses of decitabine, and chose a low, clinically relevant drug dose to perform whole-genome differential gene expression, bioinformatic analysis, and protein validation studies. The data ruled out the DNA damage response, demonstrated the involvement of p21Cip1 in a p53-independent manner, identified the TGFβ pathway genes CLU and TGFBI as markers of sensitivity to decitabine and revealed an effect on histone modification as part of decitabine-induced gene expression. Mutation analysis and knockdown by siRNA implicated activated β-catenin/MITF, but not BRAF, NRAS or PTEN mutations as a source for resistance. The importance of protein stability predicted from the results was validated by the synergistic effect of Bortezomib, a proteasome inhibitor, in enhancing the growth arrest of decitabine in otherwise resistant melanoma cells. Our integrative analysis show that improved therapy can be achieved by comprehensive analysis of cancer cells, identified biomarkers for patient''s selection and monitoring response, as well as targets for improved combination therapy.  相似文献   

2.
Cisplatin is a widely used chemotherapeutic agent to treat a variety of solid tumors. The cytotoxic mode of action of cisplatin is mediated by inducing conformational changes in DNA including intra- and inter-strand crosslink adducts. Recognition of these adducts results in the activation of the DNA damage response resulting in cell cycle arrest, repair, and potentially, apoptosis. Despite the clinical efficacy of cisplatin, many tumors are either intrinsically resistant or acquire resistance during treatment. The identification of cisplatin drug response modulators can help us understand these resistance mechanisms, provide biomarkers for treatment strategies, or provide drug targets for combination therapy. Here we discuss functional genetic screens, including one performed by us, set up to identify genes whose inhibition results in increased sensitivity to cisplatin. In summary, the validated genes identified in these screens mainly operate in DNA damage response including nucleotide excision repair, translesion synthesis, and homologous recombination.  相似文献   

3.
4.
Hyper-activation of DNA repair pathways can enable tumor cells to survive DNA damage. Therefore, targeting specific DNA repair pathways might prove efficacious for cancer therapy. The advent of personalized therapy necessitates novel biomarkers to assess tumor response to therapy. Biological indicators are vital in the field of cancer research and treatment. The focus of this review is on the DNA repair machinery as an emerging target for enhancement of therapy. Additionally, DNA damage and repair biomarkers for prognosis in different types of cancer will be discussed. The application of biomarkers to assess tumor response to therapy based on targeting DNA repair pathways can potentially improve patient quality of life and aid in treatment design.  相似文献   

5.
DNA damage response (DDR) genes and pathways controlling the stability of HPV episomal DNA are reported here. We set out to understand the mechanism by which a DNA-binding, N-methylpyrrole-imidazole hairpin polyamide (PA25) acts to cause the dramatic loss of HPV DNA from cells. Southern blots revealed that PA25 alters HPV episomes within 5 hours of treatment. Gene expression arrays identified numerous DDR genes that were specifically altered in HPV16 episome-containing cells (W12E) by PA25, but not in HPV-negative (C33A) cells or in cells with integrated HPV16 (SiHa). A siRNA screen of 240 DDR genes was then conducted to identify enhancers and repressors of PA25 activity. Serendipitously, the screen also identified many novel genes, such as TDP1 and TDP2, regulating normal HPV episome stability. MRN and 9-1-1 complexes emerged as important for PA25-mediated episome destruction and were selected for follow-up studies. Mre11, along with other homologous recombination and dsDNA break repair genes, was among the highly significant PA25 repressors. The Mre11 inhibitor Mirin was found to sensitize HPV episomes to PA25 resulting in a ∼5-fold reduction of the PA25 IC50. A novel assay that couples end-labeling of DNA to Q-PCR showed that PA25 causes strand breaks within HPV DNA, and that Mirin greatly enhances this activity. The 9-1-1 complex member Rad9, a representative PA25 enhancer, was transiently phosphorylated in response to PA25 treatment suggesting that it has a role in detecting and signaling episome damage by PA25 to the cell. These results establish that DNA-targeted compounds enter cells and specifically target the HPV episome. This action leads to the activation of numerous DDR pathways and the massive elimination of episomal DNA from cells. Our findings demonstrate that viral episomes can be targeted for elimination from cells by minor groove binding agents, and implicate DDR pathways as important mediators of this process.  相似文献   

6.
7.
Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.  相似文献   

8.
Because of the low overall response rates of 10–47% to targeted cancer therapeutics, there is an increasing need for predictive biomarkers. We aimed to identify genes predicting response to five already approved tyrosine kinase inhibitors. We tested 45 cancer cell lines for sensitivity to sunitinib, erlotinib, lapatinib, sorafenib and gefitinib at the clinically administered doses. A resistance matrix was determined, and gene expression profiles of the subsets of resistant vs. sensitive cell lines were compared. Triplicate gene expression signatures were obtained from the caArray project. Significance analysis of microarrays and rank products were applied for feature selection. Ninety-five genes were also measured by RT-PCR. In case of four sunitinib resistance associated genes, the results were validated in clinical samples by immunohistochemistry. A list of 63 top genes associated with resistance against the five tyrosine kinase inhibitors was identified. Quantitative RT-PCR analysis confirmed 45 of 63 genes identified by microarray analysis. Only two genes (ANXA3 and RAB25) were related to sensitivity against more than three inhibitors. The immunohistochemical analysis of sunitinib-treated metastatic renal cell carcinomas confirmed the correlation between RAB17, LGALS8, and EPCAM and overall survival. In summary, we determined predictive biomarkers for five tyrosine kinase inhibitors, and validated sunitinib resistance biomarkers by immunohistochemistry in an independent patient cohort.  相似文献   

9.
10.
Chemoresistance is the main cause of treatment failure in advanced colorectal cancer (CRC). However, molecular mechanisms underlying this phenomenon remain to be elucidated. In a previous work we identified low levels of PKM2 as a putative oxaliplatin-resistance marker in HT29 CRC cell lines and also in patients. In order to assess how PKM2 influences oxaliplatin response in CRC cells, we silenced PKM2 using specific siRNAs in HT29, SW480 and HCT116 cells. MTT test demonstrated that PKM2 silencing induced resistance in HT29 and SW480 cells and sensitivity in HCT116 cells. Same experiments in isogenic HCT116 p53 null cells and double silencing of p53 and PKM2 in HT29 cells failed to show an influence of p53. By using trypan blue stain and FITC-Annexin V/PI tests we detected that PKM2 knockdown was associated with an increase in cell viability but not with a decrease in apoptosis activation in HT29 cells. Fluorescence microscopy revealed PKM2 nuclear translocation in response to oxaliplatin in HCT116 and HT29 cells but not in OXA-resistant HTOXAR3 cells. Finally, by using a qPCR Array we demonstrated that oxaliplatin and PKM2 silencing altered cell death gene expression patterns including those of BMF, which was significantly increased in HT29 cells in response to oxaliplatin, in a dose and time-dependent manner, but not in siPKM2-HT29 and HTOXAR3 cells. BMF gene silencing in HT29 cells lead to a decrease in oxaliplatin-induced cell death. In conclusion, our data report new non-glycolytic roles of PKM2 in response to genotoxic damage and proposes BMF as a possible target gene of PKM2 to be involved in oxaliplatin response and resistance in CRC cells.  相似文献   

11.
RNA interference technology allows the systematic genetic analysis of the molecular alterations in cancer cells and how these alterations affect response to therapies. Here we used small interfering RNA (siRNA) screens to identify genes that enhance the cytotoxicity (enhancers) of established anticancer chemotherapeutics. Hits identified in drug enhancer screens of cisplatin, gemcitabine, and paclitaxel were largely unique to the drug being tested and could be linked to the drug's mechanism of action. Hits identified by screening of a genome-scale siRNA library for cisplatin enhancers in TP53-deficient HeLa cells were significantly enriched for genes with annotated functions in DNA damage repair as well as poorly characterized genes likely having novel functions in this process. We followed up on a subset of the hits from the cisplatin enhancer screen and validated a number of enhancers whose products interact with BRCA1 and/or BRCA2. TP53(+/-) matched-pair cell lines were used to determine if knockdown of BRCA1, BRCA2, or validated hits that associate with BRCA1 and BRCA2 selectively enhances cisplatin cytotoxicity in TP53-deficient cells. Silencing of BRCA1, BRCA2, or BRCA1/2-associated genes enhanced cisplatin cytotoxicity approximately 4- to 7-fold more in TP53-deficient cells than in matched TP53 wild-type cells. Thus, tumor cells having disruptions in BRCA1/2 network genes and TP53 together are more sensitive to cisplatin than cells with either disruption alone.  相似文献   

12.
13.
14.
The evolving field of cancer pharmacogenomics uses genetic profiling to predict the response of tumor and normal tissue to therapy. The narrow therapeutic index and heterogeneity of patient responses to chemotherapy and radiotherapy implies that the efficacy of these treatments could, potentially, be significantly enhanced by improving our understanding of the genetic bases for interindividual differences in their effects. The cytotoxicity of both chemotherapy and radiotherapy is to a large extent directly related to their ability to induce DNA damage. The ability of cancer cells to recognize and repair this damage contributes to therapeutic resistance. On the other hand, suboptimal DNA repair in normal tissue may negatively impact on normal tissue tolerance.More than 130 genes have been identified that are associated with human DNA repair, and single nucleotide polymorphisms of several of the DNA repair genes have been described recently. In this article, we present the current evidence implicating variations within DNA repair genes as important predictive and prognostic markers in cancer. We review evidence suggesting DNA repair genetic polymorphisms may significantly influence the clinical response to chemotherapy and radiotherapy, and may influence normal tissue tolerance to cancer treatments.  相似文献   

15.
《Genomics》2019,111(6):1226-1230
Through a genetic screen we have identified 21 genes whose inactivation renders Candida albicans cells sensitive to high levels of extracellular calcium. These genes are involved in the tricarboxylic acid cycle, cell wall integrity pathway, cytokinesis, intracellular pH homeostasis, magnesium transport, as well as DNA damage response and repair processes. The calcium sensitivity due to inactivation of nine of these genes can be partially or completely suppressed by cyclosporine A, an inhibitor of calcineurin. Therefore, the calcium sensitivity of nearly a half of these 21 mutations is at least partially due to the activation of calcium/calcineurin signaling. Our work provides a basis for further understanding the regulation of calcium homeostasis in this important human fungal pathogen.  相似文献   

16.
17.
Drug resistance remains a barrier to the effective long term treatment of ovarian cancer. We have established an RNAi-based screen to identify genes which confer resistance to carboplatin or paclitaxel. To validate the screen we showed that siRNA interfering with the apoptosis regulators FLIP and Bcl-XL conferred sensitivity to paclitaxel and carboplatin respectively. The expression of 90 genes which have previously been shown to be over-expressed in drug-resistant ovarian cancer was inhibited using siRNA and the impact on sensitivity to carboplatin and paclitaxel was assessed. ENPP2 was identified as a candidate gene causing drug resistance. ENPP2 encodes autotaxin, a phospholipase involved in the synthesis of the survival factor lysophosphatidic acid. siRNA directed to ENPP2 resulted in earlier apoptosis following treatment with carboplatin. 2-carbacyclic phosphatidic acid (ccPA 16:1), a small molecule inhibitor of autotaxin, also accelerated apoptosis induced by carboplatin. Stable ectopic expression of autotaxin in OVCAR-3 cells led to a delay in apoptosis. When serum was withdrawn to remove exogenous LPA, ccPA caused a pronounced potentiation of apoptosis induced by carboplatin in cells expressing autotaxin. These results indicate that autotaxin delays apoptosis induced by carboplatin in ovarian cancer cells.  相似文献   

18.
Because of essential roles of DNA damage response (DDR) in the maintenance of genomic integrity, cellular homeostasis, and tumor suppression, targeting DDR has become a promising therapeutic strategy for cancer treatment. However, the benefits of cancer therapy targeting DDR are limited mainly due to the lack of predictive biomarkers. To address this challenge, we performed CRISPR screens to search for genetic vulnerabilities that affect cells’ response to DDR inhibition. By undertaking CRISPR screens with inhibitors targeting key DDR mediators, i.e. ATR, ATM, DNAPK and CHK1, we obtained a global and unbiased view of genetic interactions with DDR inhibition. Specifically, we identified YWHAE loss as a key determinant of sensitivity to CHK1 inhibition. We showed that KLHL15 loss protects cells from DNA damage induced by ATM inhibition. Moreover, we validated that APEX1 loss sensitizes cells to DNAPK inhibition. Additionally, we compared the synergistic effects of combining different DDR inhibitors and found that an ATM inhibitor plus a PARP inhibitor induced dramatic levels of cell death, probably through promoting apoptosis. Our results enhance the understanding of DDR pathways and will facilitate the use of DDR-targeting agents in cancer therapy.  相似文献   

19.
20.
Drug resistance is a major obstacle in the successful treatment of cancer. Thus, elucidation of the mechanisms responsible is a critical first step in trying to prevent or delay such manifestations of resistance. In this regard, three-dimensional multicellular tumor cell spheroids are intrinsically more resistant to virtually all anticancer cytotoxic drugs than conventional monolayer cultures. We have employed the EMT-6 subline PC5T, which forms highly compact spheroids, and differential display to identify candidate genes whose expression differs between monolayer and spheroids. Approximately 5,000 bands were analyzed, revealing 26 to be differentially expressed. Analysis of EMT-6 tumor variants selected in vivo for acquired resistance to alkylating agents identified eight genes whose expression correlated with drug resistance in tumor spheroids. Four genes (encoding Nop56, the NADH SDAP subunit, and two novel sequences) were found to be down-regulated in EMT-6 spheroids and four (encoding 2-oxoglutarate carrier protein, JTV-1, and two novel sequences) were up-regulated. Analysis of the DNA mismatch repair-associated PMS2 gene, which overlaps at the genomic level with the JTV-1 gene, revealed PMS2 mRNA to be down-regulated in tumor spheroids, which was confirmed at the protein level. Analysis of PMS2(-/-) mouse embryo fibroblasts confirmed a role for PMS2 in sensitivity to cisplatin, and DNA mismatch repair activity was found to be reduced in EMT-6 spheroids compared to monolayers. Dominant negative PMS2 transfection caused increased resistance to cisplatin in EMT-6 and CHO cells. Our results implicate reduced DNA mismatch repair as a determinant factor of reversible multicellular resistance of tumor cells to alkylating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号