首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The expression of human genes in bacteria is often one of the most efficient systems for generating proteins for drug discovery efforts. However, expression of mammalian cDNAs in Escherichia coli often results in the production of protein that is insoluble and misfolded and thus requires the development of a successful refolding procedure to generate active protein. To accelerate the process of developing protein refolding protocols, we have developed a semi-automated screening and assay system that utilizes an incomplete factorial approach to sample a large "space" of refolding conditions based on parameters known to influence protein stability and solubility. Testing of these conditions is performed readily in a 96-well plate format with minimal sample manipulation. The folded protein is resolved and detected using an HPLC equipped with a mini-column and a highly sensitive fluorescence detector. This simple method requires only a small amount of protein for the entire screen (<1 mg), and most importantly, a functional assay is not required to assess the refolding yields. Here, we validate the utility of this screening system using two model proteins, IL13 and MMP13, and demonstrate its successful application to the refolding of our target protein, the ligand-binding domain of rat liver X receptor beta.  相似文献   

3.
4.
Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.  相似文献   

5.
6.
SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome, whose outbreak caused the ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally-conserved coronavirus structural RNA elements have been identified to date. Here, we performed RNA structure probing to obtain single-base resolution secondary structure maps of the full SARS-CoV-2 coronavirus genome both in vitro and in living infected cells. Probing data recapitulate the previously described coronavirus RNA elements (5′ UTR and s2m), and reveal new structures. Of these, ∼10.2% show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. Secondary structure-restrained 3D modeling of these segments further allowed for the identification of putative druggable pockets. In addition, we identify a set of single-stranded segments in vivo, showing high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.  相似文献   

7.
People who begin daily smoking at an early age are at greater risk of long-term nicotine addiction. We tested the hypothesis that associations between nicotinic acetylcholine receptor (nAChR) genetic variants and nicotine dependence assessed in adulthood will be stronger among smokers who began daily nicotine exposure during adolescence. We compared nicotine addiction—measured by the Fagerstrom Test of Nicotine Dependence—in three cohorts of long-term smokers recruited in Utah, Wisconsin, and by the NHLBI Lung Health Study, using a candidate-gene approach with the neuronal nAChR subunit genes. This SNP panel included common coding variants and haplotypes detected in eight α and three β nAChR subunit genes found in European American populations. In the 2,827 long-term smokers examined, common susceptibility and protective haplotypes at the CHRNA5-A3-B4 locus were associated with nicotine dependence severity (p=2.0×10−5; odds ratio=1.82; 95% confidence interval 1.39–2.39) in subjects who began daily smoking at or before the age of 16, an exposure period that results in a more severe form of adult nicotine dependence. A substantial shift in susceptibility versus protective diplotype frequency (AA versus BC=17%, AA versus CC=27%) was observed in the group that began smoking by age 16. This genetic effect was not observed in subjects who began daily nicotine use after the age of 16. These results establish a strong mechanistic link among early nicotine exposure, common CHRNA5-A3-B4 haplotypes, and adult nicotine addiction in three independent populations of European origins. The identification of an age-dependent susceptibility haplotype reinforces the importance of preventing early exposure to tobacco through public health policies.  相似文献   

8.
9.
A proteomics approach has been developed aimed to allow high throughput analysis of protein products expressed from cDNA fragments (expressed sequence tags, ESTs). The concept relies on expression of gene products to generate specific antibodies for protein analysis, such as immunolocalization of the proteins on cellular and subcellular level. To evaluate the system, 55 cDNA clones with predominantly unknown function were selected from a mouse testis cDNA-library. A bacterial expression system was designed that allowed robust expression and easy purification. Protein levels between 15 and 80 mg l(-1) were obtained for 49 of the clones. Five clones were selected for immunization and all yielded functional antibodies that gave specific staining in Western blot screening of samples from various cell types. Furthermore, extensive immunolocalization information on subcellular level was obtained for three of the five clones. All generated data were stored in a relational database, and are made available through a web-interface (http://www.biochem.kth.se/multiscale/), which also provides relevant links and allows homology searches from the original sequences. The possibility to allow analysis of gene products from whole genomes using this 'localization proteomics' approach is discussed.  相似文献   

10.
CUG-BP is a human nuclear and cytoplasmic RNA-binding protein. A role in the control of alternative splicing has been reported, but to date no cytoplasmic function for this protein has been demonstrated. A close sequence homolog of CUG-BP is EDEN-BP that is required for the specific cytoplasmic poly(A) tail shortening of certain mRNAs after fertilization of Xenopus eggs. Here, we show that human CUG-BP and Xenopus EDEN-BP have very similar RNA-binding specificities. In addition, we use a deadenylation assay to show that CUG-BP is able to act as a deadenylation factor. In contrast, a mutant form of CUG-BP, though still able to bind to RNA with a specificity similar to that of wild-type CUG-BP, does not act as a deadenylation factor. It is suggested that the CUG expansion associated with Type 1 myotonic dystrophy can affect the function or the activity of CUG-BP, leading to a trans-dominant effect on normal RNA processing. The results presented here identify CUG-BP-dependent deadenylation as a potential cytoplasmic target for this trans-dominant effect.  相似文献   

11.
Arabinoxylans (AXs) are major components of graminaceous plant cell walls, including those in the grain and straw of economically important cereals. Despite some recent advances in identifying the genes encoding biosynthetic enzymes for a number of other plant cell wall polysaccharides, the genes encoding enzymes of the final stages of AX synthesis have not been identified. We have therefore adopted a novel bioinformatics approach based on estimation of differential expression of orthologous genes between taxonomic divisions of species. Over 3 million public domain cereal and dicot expressed sequence tags were mapped onto the complete sets of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) genes, respectively. It was assumed that genes in cereals involved in AX biosynthesis would be expressed at high levels and that their orthologs in dicotyledonous plants would be expressed at much lower levels. Considering all rice genes encoding putative glycosyl transferases (GTs) predicted to be integral membrane proteins, genes in the GT43, GT47, and GT61 families emerged as much the strongest candidates. When the search was widened to all other rice or Arabidopsis genes predicted to encode integral membrane proteins, cereal genes in Pfam family PF02458 emerged as candidates for the feruloylation of AX. Our analysis, known activities, and recent findings elsewhere are most consistent with genes in the GT43 families encoding beta-1,4-xylan synthases, genes in the GT47 family encoding xylan alpha-1,2- or alpha-1,3-arabinosyl transferases, and genes in the GT61 family encoding feruloyl-AX beta-1,2-xylosyl transferases.  相似文献   

12.
Glial cells support neuronal survival and function by secreting neurotrophic cytokines. Retinal Mueller glial cells (RMGs) support retinal neurons, especially photoreceptors. These highly light-sensitive sensory neurons receive vision, and their death results in blinding diseases. It has been proposed that RMGs release factors that support photoreceptor survival, but the nature of these factors remains to be elucidated. To discover such neurotrophic factors, we developed an integrated work flow toward systematic identification of neuroprotective proteins, which are, like most cytokines, expressed only in minute amounts. This strategy can be generally applied to identify secreted bioactive molecules from any body fluid once a recipient cell for this activity is known. Toward this goal we first isolated conditioned medium (CM) from primary porcine RMGs cultured in vitro and tested for survival-promoting activity using primary photoreceptors. We then developed a large scale, microplate-based cellular high content assay that allows rapid assessment of primary photoreceptor survival concomitant with biological activity in vitro. The enrichment strategy of bioactive proteins toward their identification consists of several fractionation steps combined with tests for biological function. Here we combined 1) size fractionation, 2) ion exchange chromatography, 3) reverse phase liquid chromatography, and 4) mass spectrometry (Q-TOF MS/MS or MALDI MS/MS) for protein identification. As a result of this integrated work flow, the insulin-like growth factor-binding proteins IGFBP5 and IGFBP7 and connective tissue growth factor (CTGF) were identified as likely candidates. Cloning and stable expression of these three candidate factors in HEK293 cells produced conditioned medium enriched for either one of the factors. IGFBP5 and CTGF, but not IGFBP7, significantly increased photoreceptor survival when secreted from HEK293 cells and when added to the original RMG-CM. This indicates that the survival-promoting activity in RMG-CM is multifactorial with IGFBP5 and CTGF as an integral part of this activity.  相似文献   

13.
14.

Background

The organization of chromatin in the nucleus plays an essential role in gene regulation. About half of the mammalian genome comprises transposable elements. Given their repetitive nature, reads associated with these elements are generally discarded or randomly distributed among elements of the same type in genome-wide analyses. Thus, it is challenging to identify the activities and properties of individual transposons. As a result, we only have a partial understanding of how transposons contribute to chromatin folding and how they impact gene regulation.

Results

Using PCR and Capture-based chromosome conformation capture (3C) approaches, collectively called 4Tran, we take advantage of the repetitive nature of transposons to capture interactions from multiple copies of endogenous retrovirus (ERVs) in the human and mouse genomes. With 4Tran-PCR, reads are selectively mapped to unique regions in the genome. This enables the identification of transposable element interaction profiles for individual ERV families and integration events specific to particular genomes. With this approach, we demonstrate that transposons engage in long-range intra-chromosomal interactions guided by the separation of chromosomes into A and B compartments as well as topologically associated domains (TADs). In contrast to 4Tran-PCR, Capture-4Tran can uniquely identify both ends of an interaction that involve retroviral repeat sequences, providing a powerful tool for uncovering the individual transposable element insertions that interact with and potentially regulate target genes.

Conclusions

4Tran provides new insight into the manner in which transposons contribute to chromosome architecture and identifies target genes that transposable elements can potentially control.
  相似文献   

15.
A susceptibility locus for coronary artery disease (CAD) has been mapped to chromosome 3q13-21 in a linkage study of early-onset CAD. We completed an association-mapping study across the 1-LOD-unit-down supporting interval, using two independent white case-control data sets (CATHGEN, initial and validation) to evaluate association under the peak. Single-nucleotide polymorphisms (SNPs) evenly spaced at 100-kb intervals were screened in the initial data set (N=468). Promising SNPs (P<.1) were then examined in the validation data set (N=514). Significant findings (P<.05) in the combined initial and validation data sets were further evaluated in multiple independent data sets, including a family-based data set (N=2,954), an African American case-control data set (N=190), and an additional white control data set (N=255). The association between genotype and aortic atherosclerosis was examined in 145 human aortas. The peakwide survey found evidence of association in SNPs from multiple genes. The strongest associations were found in three SNPs from the kalirin (KALRN) gene, especially in patients with early-onset CAD (P=.00001-00028 in the combined CATHGEN data sets). In-depth investigation of the gene found that an intronic SNP, rs9289231, was associated with early-onset CAD in all white data sets examined (P<.05). In the joint analysis of all white early-onset CAD cases (N=332) and controls (N=546), rs9289231 was highly significant (P=.00008), with an odds-ratio estimate of 2.1. Furthermore, the risk allele of this SNP was associated with atherosclerosis burden (P=.03) in 145 human aortas. KALRN is a protein with many functions, including the inhibition of inducible nitric oxide synthase and guanine-exchange-factor activity. KALRN and two other associated genes identified in this study (CDGAP and MYLK) belong to the Rho GTPase-signaling pathway. Our data suggest the importance of the KALRN gene and the Rho GTPase-signaling pathway in the pathogenesis of CAD.  相似文献   

16.
The complex role that the heterotrimeric G proteins play in signaling pathways has become increasingly apparent with the cloning of countless numbers of receptors, G proteins, and effectors. However, in most cases, the specific combinations of alpha and betagamma subunits comprising the G proteins that participate in the most common signaling pathways, such as beta-adrenergic regulation of adenylyl cyclase activity, are not known. The extent of this problem is evident in the fact that the identities of the betagamma subunits that combine with the alpha subunit of Gs are only now being elucidated almost 20 years after its initial purification. In a previous study, we described the first use of a ribozyme strategy to suppress specifically the expression of the gamma7 subunit of the G proteins, thereby identifying a specific role of this protein in coupling the beta-adrenergic receptor to stimulation of adenylyl cyclase activity in HEK 293 cells. In the present study, we explored the potential utility of a ribozyme approach directed against the gamma7 subunit to identify functional associations with a particular beta and alphas subunit of the G protein in this signaling pathway. Accordingly, HEK 293 cells were transfected with a ribozyme directed against the gamma7 subunit, and the effects of this manipulation on levels of the beta and alphas subunits were determined by immunoblot analysis. Among the five beta alphas subunits detected in these cells, only the beta1 subunit was coordinately reduced following treatment with the ribozyme directed against the gamma7 subunit, thereby demonstrating a functional association between the beta1 and gamma7 subunits. The mechanism for coordinate suppression of the beta1 subunit was due to a striking change in the half-life of the beta1 monomer versus the beta1 heterodimer complexed with the gamma7 subunit. Neither the 52- nor 45-kDa subunits were suppressed following treatment with the ribozyme directed against the gamma7 subunit, thereby providing insights into the assembly of the Gs heterotrimer. Taken together, these data show the utility of a ribozyme approach to identify the role of not only the gamma subunits but also the beta subunits of the G proteins in signaling pathways.  相似文献   

17.
SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As?a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in?the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.  相似文献   

18.
Interferons establish an antiviral state through the induction of hundreds of interferon-stimulated genes (ISGs). The mechanisms and viral specificities for most ISGs remain incompletely understood. To enable high-throughput interrogation of ISG antiviral functions in pooled genetic screens while mitigating potentially confounding effects of endogenous interferon and antiproliferative/proapoptotic ISG activities, we adapted a CRISPR-activation (CRISPRa) system for inducible ISG expression in isogenic cell lines with and without the capacity to respond to interferons. We used this platform to screen for ISGs that restrict SARS-CoV-2. Results included ISGs previously described to restrict SARS-CoV-2 and novel candidate antiviral factors. We validated a subset of these by complementary CRISPRa and cDNA expression experiments. OAS1, a top-ranked hit across multiple screens, exhibited strong antiviral effects against SARS-CoV-2, which required OAS1 catalytic activity. These studies demonstrate a high-throughput approach to assess antiviral functions within the ISG repertoire, exemplified by identification of multiple SARS-CoV-2 restriction factors.  相似文献   

19.
Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained.  相似文献   

20.
Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号