首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of regulatory T cells (Treg) to traffic to sites of inflammation supports their role in controlling immune responses. This feature supports the idea that adoptive transfer of in vitro expanded human Treg could be used for treatment of immune/inflammatory diseases. However, the migratory behavior of Treg, as well as their direct influence at the site of inflammation, remains poorly understood. To explore the possibility that Treg may have direct anti-inflammatory influences on tissues, independent of their well-established suppressive effects on lymphocytes, we studied the adhesive interactions between mouse Treg and endothelial cells, as well as their influence on endothelial function during acute inflammation. We show that Foxp3(+) adaptive/inducible Treg (iTreg), but not naturally occurring Treg, efficiently interact with endothelial selectins and transmigrate through endothelial monolayers in vitro. In response to activation by endothelial Ag presentation or immobilized anti-CD3ε, Foxp3(+) iTreg suppressed TNF-α- and IL-1β-mediated endothelial selectin expression and adhesiveness to effector T cells. This suppression was contact independent, rapid acting, and mediated by TGF-β-induced activin receptor-like kinase 5 signaling in endothelial cells. In addition, Foxp3(+) iTreg adhered to inflamed endothelium in vivo, and their secretion products blocked acute inflammation in a model of peritonitis. These data support the concept that Foxp3(+) iTreg help to regulate inflammation independently of their influence on effector T cells by direct suppression of endothelial activation and leukocyte recruitment.  相似文献   

2.
Regulatory T cells (Tregs) play a critical role in the maintenance of airway tolerance. We report that inhaled soluble Ag induces adaptive Foxp3(+) Tregs, as well as a regulatory population of CD4(+) T cells in the lungs and lung-draining lymph nodes that express latency-associated peptide (LAP) on their cell surface but do not express Foxp3. Blocking the cytokine IL-10 or TGF-β prevented the generation of LAP(+) Tregs and Foxp3(+) Tregs in vivo, and the LAP(+) Tregs could also be generated concomitantly with Foxp3(+) Tregs in vitro by culturing naive CD4(+) T cells with Ag and exogenous TGF-β. The LAP(+) Tregs strongly suppressed naive CD4(+) T cell proliferation, and transfer of sorted OVA-specific LAP(+) Tregs in vivo inhibited allergic eosinophilia and Th2 cytokine expression in the lung, either when present at the time of Th2 sensitization or when injected after Th2 cells were formed. Furthermore, inflammatory innate stimuli from house dust mite extract, nucleotide-binding oligomerization domain containing 2 ligand, and LPS, which are sufficient for blocking airway tolerance, strongly decreased the induction of LAP(+) Tregs. Taken together, we concluded that inducible Ag-specific LAP(+) Tregs can suppress asthmatic lung inflammation and constitute a mediator of airway tolerance together with Foxp3(+) Tregs.  相似文献   

3.
The concentration of Ag or mitogenic stimuli is known to play an important role in controlling the differentiation of naive CD4(+) T cells into different effector phenotypes. In particular, whereas TCR engagement at low Ag doses in the presence of TGF-β and IL-2 can promote differentiation of Foxp3-expressing induced regulatory T cells (iTregs), high levels of Ag have been shown in vitro and in vivo to prevent Foxp3 upregulation. This tight control of iTreg differentiation dictated by Ag dose most likely determines the quality and duration of an immune response. However, the molecular mechanism by which this high-dose inhibition of Foxp3 induction occurs is not well understood. In this study, we demonstrate that when cells are in the presence of CD28 costimulation, TCR-dependent NF-κB signaling is essential for Foxp3 inhibition at high doses of TCR engagement in mouse T cells. Prevention of Foxp3 induction depends on the production of NF-κB-dependent cytokines by the T cells themselves. Moreover, T cells that fail to upregulate Foxp3 under iTreg-differentiating conditions and high TCR stimulation acquire the capacity to make TNF and IFN-γ, as well as IL-17 and IL-9. Thus, NF-κB helps T cells control their differentiation fate in a cell-intrinsic manner and prevents peripheral iTreg development under conditions of high Ag load that may require more vigorous effector T cell responses.  相似文献   

4.
5.
TGF-beta induces Foxp3 expression in stimulated T cells. These Foxp3 cells (induced regulatory T cells (iTreg)) share functional and therapeutic properties with thymic-derived Foxp3 regulatory T cells (natural regulatory T cells (nTreg)). We performed a single-cell analysis to better characterize the regulation of Foxp3 in iTreg in vitro and assess their dynamics after transfer in vivo. TGF-beta up-regulated Foxp3 in CD4(+)Foxp3 T cells only when added within a 2- to 3-day window of CD3/CD28 stimulation. Up to 90% conversion occurred, beginning after 1-2 days of treatment. Foxp3 expression strictly required TCR stimulation but not costimulation and was independent of cell cycling. Removal of TGF-beta led to a loss of Foxp3 expression after an approximately 4-day lag. Most iTreg transferred into wild-type mice down-regulated Foxp3 within 2 days, and these Foxp3 cells were concentrated in the blood, spleen, lung, and liver. Few of the Foxp3 cells were detected by 28 days after transfer. However, some Foxp3 cells persisted even to this late time point, and these preferentially localized to the lymph nodes and bone marrow. CXCR4 was preferentially expressed on Foxp3 iTreg within the bone marrow, and CD62L was preferentially expressed on those in the lymph nodes. Like transferred nTreg and in contrast with revertant Foxp3 cells, Foxp3 iTreg retained CD25 and glucocorticoid-induced TNFR family-related gene. Thus, Foxp3 expression in na?ve-stimulated T cells is transient in vitro, dependent on TGF-beta activity within a highly restricted window after activation and continuous TGF-beta presence. In vivo, a subset of transferred iTreg persist long term, potentially providing a lasting source for regulatory activity after therapeutic administration.  相似文献   

6.
7.
The ability of activated B cells to protect against various experimental autoimmune or allergic diseases makes them attractive for use in cell-based therapies. We describe an efficient way to generate B cells with strong suppressive functions by incubating naive B cells with a relevant Ag conjugated to cholera toxin B subunit (CTB). This allows most B cells, irrespective of BCR, to take up and present Ag and induces their expression of latency-associated polypeptide (LAP)/TGF-β and after adoptive transfer also their production of IL-10. With OVA as model Ag, when naive T cells were cocultured in vitro with B cells pretreated with OVA conjugated to CTB (OVA/CTB) Ag-specific CD4(+) Foxp3 regulatory T (Treg) cells increased >50-fold. These cells effectively suppressed CD25(-)CD4(+) effector T (Teff) cells in secondary cultures. Adoptive transfer of OVA/CTB-treated B cells to mice subsequently immunized with OVA in CFA induced increase in Foxp3 Treg cells together with suppression and depletion of Teff cells. Likewise, adoptive transfer of B cells pulsed with myelin oligodendrocyte glycoprotein peptide(35-55) (MOGp) conjugated to CTB increased the number of Treg cells, suppressed MOGp-specific T cell proliferation and IL-17 and IFN-γ production, and prevented the development of experimental autoimmune encephalomyelitis. Similar effects were seen when B cells were given "therapeutically" to mice with early-stage experimental autoimmune encephalomyelitis. Our results suggest that B cells pulsed in vitro with relevant Ag/CTB conjugates may be used in cell therapy to induce Ag-specific suppression of autoimmune disease.  相似文献   

8.
9.
10.
Oral immunization with a Salmonella vaccine vector expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) can protect against collagen-induced arthritis (CIA) by dampening IL-17 and IFN-γ via enhanced IL-4, IL-10, and TGF-β. To identify the responsible regulatory CD4(+) T cells making the host refractory to CIA, Salmonella-CFA/I induced CD39(+)CD4(+) T cells with enhanced apyrase activity relative to Salmonella vector-immunized mice. Adoptive transfer of vaccine-induced CD39(+)CD4(+) T cells into CIA mice conferred complete protection, whereas CD39(-)CD4(+) T cells did not. Subsequent analysis of vaccinated Foxp3-GFP mice revealed the CD39(+) T cells were composed of Foxp3-GFP(-) and Foxp3-GFP(+) subpopulations. Although each adoptively transferred Salmonella-CFA/I-induced Foxp3(-) and Foxp3(+)CD39(+)CD4(+) T cells could protect against CIA, each subset was not as efficacious as total CD39(+)CD4(+) T cells, suggesting their interdependence for optimal protection. Cytokine analysis revealed Foxp3(-) CD39(+)CD4(+) T cells produced TGF-β, and Foxp3(+)CD39(+)CD4(+) T cells produced IL-10, showing a segregation of function. Moreover, donor Foxp3-GFP(-) CD4(+) T cells converted to Foxp3-GFP(+) CD39(+)CD4(+) T cells in the recipients, showing plasticity of these regulatory T cells. TGF-β was found to be essential for protection because in vivo TGF-β neutralization reversed activation of CREB and reduced the development of CD39(+)CD4(+) T cells. Thus, CD39 apyrase-expressing CD4(+) T cells stimulated by Salmonella-CFA/I are composed of TGF-β-producing Foxp3(-) CD39(+)CD4(+) T cells and support the stimulation of IL-10-producing Foxp3(+) CD39(+)CD4(+) T cells.  相似文献   

11.
12.
TGF-beta induces Foxp3 expression in stimulated T cells. These Foxp3+ cells (induced regulatory T cells (iTreg)) share functional and therapeutic properties with thymic-derived Foxp3+ regulatory T cells (natural regulatory T cells (nTreg)). We performed a single-cell analysis to better characterize the regulation of Foxp3 in iTreg in vitro and assess their dynamics after transfer in vivo. TGF-beta up-regulated Foxp3 in CD4+Foxp3- T cells only when added within a 2- to 3-day window of CD3/CD28 stimulation. Up to 90% conversion occurred, beginning after 1-2 days of treatment. Foxp3 expression strictly required TCR stimulation but not costimulation and was independent of cell cycling. Removal of TGF-beta led to a loss of Foxp3 expression after an approximately 4-day lag. Most iTreg transferred into wild-type mice down-regulated Foxp3 within 2 days, and these Foxp3- cells were concentrated in the blood, spleen, lung, and liver. Few of the Foxp3- cells were detected by 28 days after transfer. However, some Foxp3+ cells persisted even to this late time point, and these preferentially localized to the lymph nodes and bone marrow. CXCR4 was preferentially expressed on Foxp3+ iTreg within the bone marrow, and CD62L was preferentially expressed on those in the lymph nodes. Like transferred nTreg and in contrast with revertant Foxp3- cells, Foxp3+ iTreg retained CD25 and glucocorticoid-induced TNFR family-related gene. Thus, Foxp3 expression in na?ve-stimulated T cells is transient in vitro, dependent on TGF-beta activity within a highly restricted window after activation and continuous TGF-beta presence. In vivo, a subset of transferred iTreg persist long term, potentially providing a lasting source for regulatory activity after therapeutic administration.  相似文献   

13.
The immune regulatory function of macrophages (M?s) in mixed chimeras has not been determined. In the present study, with a multi-lineage B6-to-BALB/c mixed chimeric model, we examined the ability of donor-derived splenic M?s in the induction of regulatory T cells (Treg). B6 splenic M?s from mixed chimeras induced significantly less cell proliferation, more IL-10 and TGF-β, and less IL-2 and IFN-γ productions of CD4(+) T cells from BALB/c mice than naive B6 M?s did, whereas they showed similar stimulatory activity to the third part C3H CD4(+) T cells. Importantly, highly purified donor F4/80(+)CD11c(-) M?s efficiently induced recipient CD4(+)Foxp3(+) Treg cells from CD4(+)CD25(-)Foxp3(-) T cells. Furthermore, donor M?s of mixed chimeras produced more IL-10 and less IFN-γ than those of naive mice when cultured with BALB/c but not the third party C3H CD4(+) T cells. Induction of recipient CD4(+) Treg cells by donor M?s was significantly blocked by anti-IL-10, but not by anti-TGF-β mAb. Therefore, donor M?s have the ability to induce recipient CD4(+)Foxp3(+) Treg cells in a donor antigen-specific manner, at least partially, via an IL-10-dependent pathway. This study for the first time showed that, in mixed allogeneic chimeras, donor M?s could be specifically tolerant to recipients and gained the ability to induce recipient but not the third party Foxp3(+) Treg cells. Whether this approach is involved in transplant immune tolerance needs to be determined.  相似文献   

14.
TGF-beta is a pluripotent cytokine that is capable of inducing the expression of Foxp3 in naive T lymphocytes. TGF-beta-induced cells are phenotypically similar to thymic-derived regulatory T cells in that they are anergic and suppressive. We have examined the cytokine and costimulatory molecule requirements for TGF-beta-mediated induction and maintenance of Foxp3 by CD4(+)Foxp3(-) cells. IL-2 plays a non-redundant role in TGF-beta-induced Foxp3 expression. Other common gamma-chain-utilizing cytokines were unable to induce Foxp3 expression in IL-2-deficient T cells. The role of CD28 in the induction of Foxp3 was solely related to its capacity to enhance the endogenous production of IL-2. Foxp3 expression was stable in vitro and in vivo in the absence of IL-2. As TGF-beta-induced T regulatory cells can be easily grown in vitro, they may prove useful for the treatment of autoimmune diseases, for the prevention of graft rejection, and graft versus host disease.  相似文献   

15.
Interest in the use of regulatory T cells (Tregs) as cellular therapeutics has been tempered by reports of naturally occurring Tregs losing Foxp3 expression and producing IL-17, raising concerns over a switch to pathogenic function under inflammatory conditions in vivo. TGF-β-induced Tregs (inducible Tregs [iTregs]), generated in large numbers in response to disease-relevant Ags, represent the most amenable source of therapeutic Tregs. Using Foxp3-reporter T cells recognizing myelin basic protein (MBP), we investigated the capacity of iTregs to produce effector-associated cytokines under proinflammatory cytokine conditions in vitro and whether this translated into proinflammatory function in vivo. In contrast with naturally occurring Tregs, iTregs resisted conversion to an IL-17-producing phenotype but were able to express T-bet and to produce IFN-γ. iTregs initiated their T-bet expression during their in vitro induction, and this was dependent on exposure to IFN-γ. IL-12 reignited iTreg expression of T-bet and further promoted iTreg production of IFN-γ upon secondary stimulation. Despite losing Foxp3 expression and expressing both T-bet and IFN-γ, MBP-responsive IL-12-conditioned iTregs induced only mild CNS inflammation and only when given in high numbers. Furthermore, iTregs retained an ability to suppress naive T cell clonal expansion in vivo and protected against the development of experimental autoimmune encephalomyelitis. Therefore, despite bearing predictive hallmarks of pathogenic effector function, previously Foxp3(+) iTregs have much lower proinflammatory potential than that of MBP-responsive Th1 cells. Our results demonstrate that autoprotective versus autoaggressive functions in iTregs are not simply a binary relationship to be determined by their relative expression of Foxp3 versus T-bet and IFN-γ.  相似文献   

16.
TGF-β can induce Foxp3(+) inducible regulatory T cells (Treg) and also synergize with IL-6 and IL-4 to induce Th17 and Th9 cells. We now report that NO modulates TGF-β activity away from Treg but toward the Th1 lineage. NO potentiated Th1 differentiation in the presence of TGF-β in both IL-12-independent and -dependent fashions by augmenting IFN-γ-activated STAT-1 and T-bet. Differentiation into Treg, Th1, and Th17 lineages could be modulated by NO competing with other cofactors, such as IL-6 and retinoic acid. NO antagonized IL-6 to block TGF-β-directed Th17 differentiation, and together with IL-6, NO suppressed Treg development induced by TGF-β and retinoic acid. Furthermore, we show that physiologically produced NO from TNF and inducible NO synthase-producing dendritic cells can contribute to Th1 development predominating over Treg development through a synergistic activity induced when these cells cocluster with conventional dendritic cells presenting Ag to naive Th cells. This illustrates that NO is another cofactor allowing TGF-β to participate in development of multiple Th lineages and suggests a new mechanism by which NO, which is associated with protection against intracellular pathogens, might maintain effective Th1 immunity.  相似文献   

17.
Transforming growth factor beta (TGF-β)- and Interleukin-2 (IL-2)-mediated signaling enables the generation and expansion of induced regulatory T (iTreg) cells that carry high hopes for the treatment of chronic inflammatory and autoimmune diseases. Knowledge about factors stabilizing their lineage commitment and lifespan, however, is limited. Here, we investigated the behavior of iTreg cells, derived from apoptosis-defective mouse mutants, during activated cell autonomous cell death, triggered by cytokine-deprivation, or activation-induced cell death (AICD) after restimulation of the T-cell receptor, and compared these responses with those of effector T cells. We observed that iTreg cells were much more sensitive to IL-2-deprivation but poorly susceptible to AICD. In fact, when apoptosis was compromised, T-cell receptor (TCR)-religation resulted in methylation-independent, ERK- and PI3K/mTOR-mediated loss of Foxp3 expression, impaired suppressive capacity and effector cytokine production. Although iTreg cells prevented colitis induction they rapidly lost Foxp3-GFP expression and gained ability to produce effector cytokines thereby imposing Th1 cell fate on resident effector cells. Surprisingly, iTreg cell conversion itself was limited by TGF-β-mediated Bim/Bcl2L11-dependent apoptosis. Hence, the very same cytokine that drives the generation of iTreg cells can trigger their demise. Our results provide novel insights in iTreg cell biology that will assist optimization of iTreg-based therapy.  相似文献   

18.
All T cells are dependent on IL-7 for their development and for homeostasis. Foxp3(+) regulatory T cells (Tregs) are unique among T cells in that they are dependent on IL-2. Whether such IL-2 dependency is distinct from or in addition to an IL-7 requirement has been a confounding issue, particularly because of the absence of an adequate experimental system to address this question. In this study, we present a novel in vivo mouse model where IL-2 expression is intact but IL-7 expression was geographically limited to the thymus. Consequently, IL-7 is not available in peripheral tissues. Such mice were generated by introducing a thymocyte-specific IL-7 transgene onto an IL-7 null background. In these mice, T cell development in the thymus, including Foxp3(+) Treg numbers, was completely restored, which correlates with the thymus-specific expression of transgenic IL-7. In peripheral cells, however, IL-7 expression was terminated, which resulted in a general paucity of T cells and a dramatic reduction of Foxp3(+) Treg numbers. Loss of Tregs was further accompanied by a significant reduction in Foxp3(+) expression levels. These data suggest that peripheral IL-7 is not only necessary for Treg survival but also for upregulating Foxp3 expression. Collectively, we assessed the effect of a selective peripheral IL-7 deficiency in the presence of a fully functional thymus, and we document a critical requirement for in vivo IL-7 in T cell maintenance and specifically in Foxp3(+) cell homeostasis.  相似文献   

19.
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号