首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.  相似文献   

2.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

3.
A better understanding of the mechanisms through which anticancer drugs exert their effects is essential to improve combination therapies. While studying how genotoxic stress kills cancer cells, we discovered a large ~2MDa cell death-inducing platform, referred to as "Ripoptosome." It contains the core components RIP1, FADD, and caspase-8, and assembles in response to genotoxic stress-induced depletion of XIAP, cIAP1 and cIAP2. Importantly, it forms independently of TNF, CD95L/FASL, TRAIL, death-receptors, and mitochondrial pathways. It also forms upon Smac-mimetic (SM) treatment without involvement of autocrine TNF. Ripoptosome assembly requires RIP1's kinase activity and can stimulate caspase-8-mediated apoptosis as well as caspase-independent necrosis. It is negatively regulated by FLIP, cIAP1, cIAP2, and XIAP. Mechanistically, IAPs target components of this complex for ubiquitylation and inactivation. Moreover, we find that etoposide-stimulated Ripoptosome formation converts proinflammatory cytokines into prodeath signals. Together, our observations shed new light on fundamental mechanisms by which chemotherapeutics may kill cancer cells.  相似文献   

4.
CD40, a tumor necrosis factor (TNF) receptor family member, is widely recognized for its prominent role in the antitumor immune response. The immunostimulatory effects of CD40 ligation on malignant cells can be switched to apoptosis upon disruption of survival signals transduced by the binding of the adaptor protein TRAF6 to CD40. Apoptosis induction requires a TRAF2-interacting CD40 motif but is initiated within a cytosolic death-inducing signaling complex after mobilization of receptor-bound TRAF2 to the cytoplasm. We demonstrate that receptor-interacting protein 1 (RIP1) is an integral component of this complex and is required for CD40 ligand-induced caspase-8 activation and tumor cell killing. Degradation of the RIP1 K63 ubiquitin ligases cIAP1/2 amplifies the CD40-mediated cytotoxic effect, whereas inhibition of CYLD, a RIP1 K63 deubiquitinating enzyme, reduces it. This two-step mechanism of apoptosis induction expands our appreciation of commonalities in apoptosis regulatory pathways across the TNF receptor superfamily and provides a telling example of how TNF family receptors usurp alternative programs to fulfill distinct cellular functions.  相似文献   

5.
Toll-like receptor 3 (TLR3) is a pattern-recognition receptor known to initiate an innate immune response when stimulated by double-stranded RNA (dsRNA). Components of TLR3 signaling, including TIR domain-containing adapter inducing IFN-α (TRIF), have been demonstrated to contribute to dsRNA-induced cell death through caspase-8 and receptor interacting protein (RIP)1 in various human cancer cells. We provide here a detailed analysis of the caspase-8 activating machinery triggered in response to Poly(I:C) dsRNA. Engagement of TLR3 by dsRNA in both type I and type II lung cancer cells induces the formation of an atypical caspase-8-containing complex that is devoid of classical death receptors of the TNFR superfamily, but instead is physically associated to TLR3. The recruitment of caspase-8 to TLR3 requires RIP1, and is negatively modulated by cellular inhibitor of apoptosis protein (cIAP)2-TNF receptor-associated factor (TRAF)2-TNFR-associated death domain (TRADD) ubiquitin ligase complex, which regulates RIP1 ubiquitination. Intriguingly, unlike Fas- or TRAILR-dependent death signaling, caspase-8 recruitment and activation within the TLR3 death-signaling complex appears not to be stringently dependent on Fas-associated with death domain (FADD). Our findings uncover a novel aspect of the molecular mechanisms involved during apoptosis induced by the innate immune receptor TLR3 in cancer cells.  相似文献   

6.
Three members of the IAP family (X-linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis proteins-1/-2 (cIAP1 and cIAP2)) are potent suppressors of apoptosis. Recent studies have shown that cIAP1 and cIAP2, unlike XIAP, are not direct caspase inhibitors, but block apoptosis by functioning as E3 ligases for effector caspases and receptor-interacting protein 1 (RIP1). cIAP-mediated polyubiquitination of RIP1 allows it to bind to the pro-survival kinase transforming growth factor-β-activated kinase 1 (TAK1) which prevents it from activating caspase-8-dependent death, a process reverted by the de-ubiquitinase CYLD. RIP1 is also a regulator of necrosis, a caspase-independent type of cell death. Here, we show that cells depleted of the IAPs by treatment with the IAP antagonist BV6 are greatly sensitized to tumor necrosis factor (TNF)-induced necrosis, but not to necrotic death induced by anti-Fas, poly(I:C) oxidative stress. Specific targeting of the IAPs by RNAi revealed that repression of cIAP1 is responsible for the sensitization. Similarly, lowering TAK1 levels or inhibiting its kinase activity sensitized cells to TNF-induced necrosis, whereas repressing CYLD had the opposite effect. We show that this sensitization to death is accompanied by enhanced RIP1 kinase activity, increased recruitment of RIP1 to Fas-associated via death domain and RIP3 (which allows necrosome formation), and elevated RIP1 kinase-dependent accumulation of reactive oxygen species (ROS). In conclusion, our data indicate that cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent ROS production.  相似文献   

7.
Inhibitor-of-apoptosis protein (IAP) inhibitors have been reported to synergistically reduce cell viability in combination with a variety of chemotherapeutic drugs via targeted cellular IAP (cIAP) depletion. Here, we found that cIAP silencing sensitised colorectal cancer (CRC) cells to selenite-induced apoptosis. Upon selenite treatment, the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed, leading to the formation of the death-inducing complex and subsequent caspase-8 activation. Although the ubiquitinases cIAP1 and cIAP2 were significantly downregulated after a 24-h selenite treatment, cylindromatosis (CYLD) deubiquitinase protein levels were marginally upregulated. Chromatin immunoprecipitation assays revealed that lymphoid enhancer factor-1 (LEF1) dissociated from the CYLD promoter upon selenite treatment, thus abolishing suppression of CYLD gene expression. We corroborated these findings in a CRC xenograft animal model using immunohistochemistry. Collectively, our findings demonstrate that selenite caused CYLD upregulation via LEF1 and cIAP downregulation, both of which contribute to the degradation of ubiquitin chains on RIP1 and subsequent caspase-8 activation and apoptosis. Importantly, our results identify a LEF1-binding site in the CYLD promoter as a potential target for combinational therapy as an alternative to cIAPs.  相似文献   

8.
TNF-alpha induces two distinct caspase-8 activation pathways   总被引:2,自引:0,他引:2  
Wang L  Du F  Wang X 《Cell》2008,133(4):693-703
The inflammatory response of mammalian cells to TNF-alpha can be switched to apoptosis either by cotreatment with a protein synthesis inhibitor, cycloheximide, or Smac mimetic, a small molecule mimic of Smac/Diablo protein. Cycloheximide promotes caspase-8 activation by eliminating endogenous caspase-8 inhibitor, c-FLIP, while Smac mimetic does so by triggering autodegradation of cIAP1 and cIAP2 (cIAP1/2), leading to the release of receptor interacting protein kinase (RIPK1) from the activated TNF receptor complex to form a caspase-8-activating complex consisting of RIPK1, FADD, and caspase-8. This process also requires the action of CYLD, a RIPK1 K63 deubiquitinating enzyme. RIPK1 is critical for caspase-8 activation-induced by Smac mimetic but dispensable for that triggered by cycloheximide. Moreover, Smac mimetic-induced caspase-8 activation is not blocked by endogenous c-FLIP. These findings revealed that TNF-alpha is able to induce apoptosis via two distinct caspase-8 activation pathways that are differentially regulated by cIAP1/2 and c-FLIP.  相似文献   

9.
Micheau O  Tschopp J 《Cell》2003,114(2):181-190
  相似文献   

10.
The RNA-binding protein Sam68 is implicated in various cellular processes including RNA metabolism, apoptosis, and signal transduction. Here we identify a role of Sam68 in TNF-induced NF-κB activation and apoptosis. We found that Sam68 is recruited to the TNF receptor, and its deficiency dramatically reduces RIP recruitment and ubiquitylation. It also impairs cIAP1 recruitment and maintenance of recruited TRAF2 at the TNF receptor. In its absence, activation of the TAK1-IKK kinase complex is defective, greatly reducing signal transduction. Sam68 is also found as a part of the TNF-induced cytoplasmic caspase-8-FADD complex. RIP is not recruited to this complex in Sam68 knockout cells, and caspase activation is virtually absent. These findings delineate previously unknown functions for Sam68 in the TNF signaling pathway, where it acts as a signaling adaptor both in the membrane-associated complex I and in the cytoplasmic complex II, regulating both NF-κB activation and apoptosis.  相似文献   

11.
Multiple pathways of TWEAK-induced cell death.   总被引:16,自引:0,他引:16  
TWEAK, a recently identified member of the TNF family, is expressed on IFN-gamma-stimulated monocytes and induces cell death in certain tumor cell lines. In this study, we characterized the TWEAK-induced cell death in several tumor cell lines that exhibited distinct features. Although the TWEAK-induced cell death in Kym-1 cells was indirectly mediated by TNF-alpha and was inhibited by cycloheximide, the TWEAK-induced cell death in HSC3 cells or IFN-gamma-treated HT-29 cells was not inhibited by anti-TNF-alpha mAb or cycloheximide, suggesting a direct triggering of cell death via TWEAK receptor in the latter cell lines. The TWEAK-induced apoptosis in HSC3 cells and IFN-gamma-treated HT-29 cells was associated with caspase-8 and caspase-3 activation. Although a pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, inhibited the TWEAK-induced cell death in HSC3 cells, it rather sensitized HT-29 cells to TWEAK-induced cell death by necrosis. This necrosis was abrogated by lysosomal proteinase inhibitors, particularly a cathepsin B inhibitor, [L-3-trans-(propylcarbamoyl)oxirane-2-carbonyl]-L-isoleucyl-L-proline methyl ester. During the process of TWEAK-induced necrosis, cathepsin B was released from lysosome to cytosol. Although DR3 has been reported to be a receptor for TWEAK, all TWEAK-sensitive tumor cell lines used in this study did not express DR3 at either protein or mRNA level, but did bind CD8-TWEAK specifically. These results indicated that TWEAK could induce multiple pathways of cell death, including both caspase-dependent apoptosis and cathepsin B-dependent necrosis, in a cell type-specific manner via TWEAK receptor(s) distinct from DR3.  相似文献   

12.
13.
TNFα stimulation triggers both cell death and survival programs. Since dysregulated apoptosis or cell growth can cause inflammatory diseases, cancer, or autoimmune disorders, it is important to understand the molecular mechanism of controlling cell death and survival by TNFR downstream signaling molecules. In this study, we used normal diploid cells, mouse embryonic fibroblasts (MEFs), to mimic the general TNFα-resistant phenomenon seen under physiological conditions. We elucidated the TNFα-induced death signaling complexes in TNF α-resistant WT MEFs and TNFα-sensitive MEFs that were cFLIP-, RelA-, TRAF2- or RIP1-deficient. Consistent with TNFα-mediated killing, we detected TNFα-induced high molecular weight complexes containing caspase-8 and FADD by gel filtration in the deficient MEFs, especially in those devoid of cFLIP. In addition to the presence of caspase-8-FADD in the TNFα-induced-death complex in the deficient MEFs, we also detected an intermediate protein complex containing RIP1, TRAF2 and caspase-8. Moreover, we demonstrated a correlation between TNFα-sensitivity and death-inducing complex ability in two transformed cell lines, E1A- and Ras- transformed MEFs and PDGF-B-transformed NIH-3T3 cells with PDGF-B signaling inhibited by the tyrosine kinase inhibitor STI571. Taken together, our results suggest the involvement of cFLIP-, RelA-, RIP1-, or TRAF2-related mechanisms for preventing FADD-caspase-8 interaction in wild-type MEFs.  相似文献   

14.

Background

Necroptosis/programmed necrosis is initiated by a macro-molecular protein complex termed the necrosome. Receptor interacting protein kinase 1 (RIPK1/RIP1) and RIP3 are key components of the necrosome. TNFα is a prototypic inducer of necrosome activation, and it is widely believed that deubiquitination of RIP1 at the TNFR-1 signaling complex precedes transition of RIP1 into the cytosol where it forms the RIP1-RIP3 necrosome. Cylindromatosis (CYLD) is believed to promote programmed necrosis by facilitating RIP1 deubiquitination at this membrane receptor complex.

Methodology/Principal Findings

We demonstrate that RIP1 is indeed the primary target of CYLD in TNFα-induced programmed necrosis. We observed that CYLD does not regulate RIP1 ubiquitination at the TNF receptor. TNF and zVAD-induced programmed necrosis was highly attenuated in CYLD-/- cells. However, in the presence of cycloheximide or SMAC mimetics, programmed necrosis was only moderately reduced in CYLD-/- cells. Under the latter conditions, RIP1-RIP3 necrosome formation is only delayed, but not abolished in CYLD-/- cells. We further demonstrate that RIP1 within the NP-40 insoluble necrosome is ubiquitinated and that CYLD regulates RIP1 ubiquitination in this compartment. Hence, RIP1 ubiquitination in this late-forming complex is greatly increased in CYLD-/- cells. Increased RIP1 ubiquitination impairs RIP1 and RIP3 phosphorylation, a signature of kinase activation.

Conclusions/Significance

Our results show that CYLD regulates RIP1 ubiquitination in the TNFα-induced necrosome, but not in the TNFR-1 signaling complex. In cells sensitized to programmed necrosis with SMAC mimetics, CYLD is not essential for necrosome assembly. Since SMAC mimetics induces the loss of the E3 ligases cIAP1 and cIAP2, reduced RIP1 ubiquitination could lead to reduced requirement for CYLD to remove ubiquitin chains from RIP1 in the TNFR-1 complex. As increased RIP1 ubiquitination in the necrosome correlates with impaired RIP1 and RIP3 phosphorylation and function, these results suggest that CYLD controls RIP1 kinase activity during necrosome assembly.  相似文献   

15.
The inhibitor of apoptosis (IAP) family of proteins enhances cell survival through mechanisms that remain uncertain. In this report, we show that cIAP1 and cIAP2 promote cancer cell survival by functioning as E3 ubiquitin ligases that maintain constitutive ubiquitination of the RIP1 adaptor protein. We demonstrate that AEG40730, a compound modeled on BIR-binding tetrapeptides, binds to cIAP1 and cIAP2, facilitates their autoubiquitination and proteosomal degradation, and causes a dramatic reduction in RIP1 ubiquitination. We show that cIAP1 and cIAP2 directly ubiquitinate RIP1 and induce constitutive RIP1 ubiquitination in cancer cells and demonstrate that constitutively ubiquitinated RIP1 associates with the prosurvival kinase TAK1. When deubiquitinated by AEG40730 treatment, RIP1 binds caspase-8 and induces apoptosis. These findings provide insights into the function of the IAPs and provide new therapeutic opportunities in the treatment of cancer.  相似文献   

16.
Receptor-interacting protein kinase 1 (RIPK1) is an important component of the tumor necrosis factor receptor 1 (TNFR1) signaling pathway. Depending on the cell type and conditions, RIPK1 mediates MAPK and NF-κB activation as well as cell death. Using a mutant form of RIPK1 (RIPK1ΔID) lacking the intermediate domain (ID), we confirm the requirement of this domain for activation of these signaling events. Moreover, expression of RIPK1ΔID resulted in enhanced recruitment of caspase-8 to the TNFR1 complex II component Fas-associated death domain (FADD), which allowed a shift from TNF-induced necroptosis to apoptosis in L929 cells. Addition of the RIPK1 kinase inhibitor necrostatin-1 strongly reduced recruitment of RIPK1 and caspase-8 to FADD and subsequent apoptosis, indicating a role for RIPK1 kinase activity in apoptotic complex formation. Our study shows that RIPK1 has an anti-apoptotic function residing in its ID and demonstrates a cellular system as an elegant genetic model for RIPK1 kinase-dependent apoptosis that, in contrast to the Smac mimetic model, does not rely on depletion of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2).  相似文献   

17.
Searching for new strategies to trigger apoptosis in rhabdomyosarcoma (RMS), we investigated the effect of two novel classes of apoptosis-targeting agents, i.e. monoclonal antibodies against TNF-related apoptosis-inducing ligand (TRAIL) receptor 1 (mapatumumab) and TRAIL receptor 2 (lexatumumab) and small-molecule inhibitors of inhibitor of apoptosis (IAP) proteins. Here, we report that IAP inhibitors synergized with lexatumumab, but not with mapatumumab, to reduce cell viability and to induce apoptosis in several RMS cell lines in a highly synergistic manner (combination index <0.1). Cotreatment-induced apoptosis was accompanied by enhanced activation of caspase-8, -9, and -3; loss of mitochondrial membrane potential; and caspase-dependent apoptosis. In addition, IAP inhibitor and lexatumumab cooperated to stimulate the assembly of a cytosolic complex containing RIP1, FADD, and caspase-8. Importantly, knockdown of RIP1 by RNA interference prevented the formation of the RIP1·FADD·caspase-8 complex and inhibited subsequent activation of caspase-8, -9, and -3; loss of mitochondrial membrane potential; and apoptosis upon treatment with IAP inhibitor and lexatumumab. In addition, RIP1 silencing rescued clonogenic survival of cells treated with the combination of lexatumumab and IAP inhibitor, thus underscoring the critical role of RIP1 in cotreatment-induced apoptosis. By comparison, the TNFα-blocking antibody Enbrel had no effect on IAP inhibitor/lexatumumab-induced apoptosis, indicating that an autocrine TNFα loop is dispensable. By demonstrating that IAP inhibitors and lexatumumab synergistically trigger apoptosis in a RIP1-dependent but TNFα-independent manner in RMS cells, our findings substantially advance our understanding of IAP inhibitor-mediated regulation of TRAIL-induced cell death.  相似文献   

18.
TWEAKing death     
Smac mimetics (inhibitor of apoptosis [IAP] antagonists) are synthetic reagents that kill susceptible tumor cells by inducing degradation of cellular IAP (cIAP) 1 and cIAP2, nuclear factor kappaB activation, tumor necrosis factor (TNF) alpha production, TNF receptor 1 occupancy, and caspase-8 activation. In this issue of The Journal of Cell Biology, Vince et al. (see p. 171) report remarkable similarities in the events leading to tumor cell death triggered by the cytokine TWEAK (TNF-like weak inducer of apoptosis) and IAP antagonists. Although the mechanistic details differ, a common and necessary feature that is also shared by TNF receptor 2 signaling is reduction in the level of cIAP1 and, in some cases, cIAP2 and TNF receptor-associated factor 2. These findings not only extend our appreciation of how cell death pathways are kept in check in tumors, they reinforce the possible utility of induced cIDE (cIAP deficiency) in the selective elimination of neoplastic cells.  相似文献   

19.
Death receptor-induced programmed necrosis is regarded as a secondary death mechanism dominating only in cells that cannot properly induce caspase-dependent apoptosis. Here, we show that in cells lacking TGFβ-activated Kinase-1 (TAK1) expression, catalytically active Receptor Interacting Protein 1 (RIP1)-dependent programmed necrosis overrides apoptotic processes following Tumor Necrosis Factor-α (TNFα) stimulation and results in rapid cell death. Importantly, the activation of the caspase cascade and caspase-8-mediated RIP1 cleavage in TNFα-stimulated TAK1 deficient cells is not sufficient to prevent RIP1-dependent necrosome formation and subsequent programmed necrosis. Our results demonstrate that TAK1 acts independently of its kinase activity to prevent the premature dissociation of ubiquitinated-RIP1 from TNFα-stimulated TNF-receptor I and also to inhibit the formation of TNFα-induced necrosome complex consisting of RIP1, RIP3, FADD, caspase-8 and cFLIP(L). The surprising prevalence of catalytically active RIP1-dependent programmed necrosis over apoptosis despite ongoing caspase activity implicates a complex regulatory mechanism governing the decision between both cell death pathways following death receptor stimulation.  相似文献   

20.
Death receptors in the TNF receptor superfamily signal for apoptosis via the ordered recruitment of FADD and caspase-8 to a death-inducing signaling complex (DISC). However, the nature of the protein-protein interactions in the signaling complex is not well defined. Here we show that FADD self-associates through a conserved RXDLL motif in the death effector domain (DED). Despite exhibiting similar binding to both Fas and caspase-8 and preserved overall secondary structure, FADD RDXLL motif mutants cannot reconstitute FasL- or TRAIL-induced apoptosis and fail to recruit caspase-8 into the DISC of reconstituted FADD-deficient cells. Abolishing self-association can transform FADD into a dominant-negative mutant that interferes with Fas-induced apoptosis and formation of microscopically visible receptor oligomers. These findings suggest that lateral interactions among adapter molecules are required for death receptor apoptosis signaling and implicate self-association into oligomeric assemblies as a key function of death receptor adapter proteins in initiating apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号