首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha-glucosidase of Bacillus sp. strain SAM1606 is a member of glycosyl hydrolase family 13, and shows an extraordinarily broad substrate specificity and is one of very few alpha-glucosidases that can efficiently hydrolyze the alpha-1,1-glucosidic linkage of alpha,alpha'-trehalose (trehalose). Phylogenetic analysis of family-13 enzymes suggests that SAM1606 alpha-glucosidase may be evolutionally derived from an alpha-1,6-specific ancestor, oligo-1,6-glucosidase (O16G). Indeed, replacement of Pro(273*) and Thr(342*) of B. cereus O16G by glycine and asparagine (the corresponding residues in the SAM1606 enzyme), respectively, was found to cause 192-fold enhancement of the relative catalytic efficiency for trehalose, suggesting that O16G may easily "evolved" into an enzyme with an extended substrate specificity by substitution of a limited number of amino acids, including that at position 273* (an asterisk indicates the amino-acid numbering of the SAM1606 sequence). To probe the role of the amino acid at position 273* of alpha-glucosidase in determination of the substrate specificity, the amino acid at position 273 of SAM1606 alpha-glucosidase was replaced by all other naturally occurring amino acids, and the resultant mutants were kinetically characterized. The results showed that substitution of bulky residues (e.g., isoleucine and methionine) for glycine at this position resulted in large increases in the K(m) values for trehalose and maltose, whereas the affinity to isomaltose was only minimally affected by such an amino-acid substitution at this position. Three-dimensional structural models of the enzyme-substrate complexes of the wild-type and mutant SAM1606 alpha-glucosidases were built to explore the mechanism responsible for these observations. It is proposed that substitution by glycine at position 273* could eliminate steric hindrance around subsite +1 that originally occurred in parental O16G and is, at least in part, responsible for the acquired broad substrate specificity of SAM1606 alpha-glucosidase.  相似文献   

2.
Dextran glucosidase from Streptococcus mutans (SMDG), an exo-type glucosidase of glycoside hydrolase (GH) family 13, specifically hydrolyzes an α-1,6-glucosidic linkage at the non-reducing ends of isomaltooligosaccharides and dextran. SMDG shows the highest sequence similarity to oligo-1,6-glucosidases (O16Gs) among GH family 13 enzymes, but these enzymes are obviously different in terms of substrate chain length specificity. SMDG efficiently hydrolyzes both short-and long-chain substrates, while O16G acts on only short-chain substrates. We focused on this difference in substrate specificity between SMDG and O16G, and elucidated the structure-function relationship of substrate chain length specificity in SMDG. Crystal structure analysis revealed that SMDG consists of three domains, A, B, and C, which are commonly found in other GH family 13 enzymes. The structural comparison between SMDG and O16G from Bacillus cereus indicated that Trp238, spanning subsites +1 and +2, and short βα loop 4, are characteristic of SMDG, and these structural elements are predicted to be important for high activity toward long-chain substrates. The substrate size preference of SMDG was kinetically analyzed using two mutants: (i) Trp238 was replaced by a smaller amino acid, alanine, asparagine or proline; and (ii) short βα loop 4 was exchanged with the corresponding loop of O16G. Mutant enzymes showed lower preference for long-chain substrates than wild-type enzyme, indicating that these structural elements are essential for the high activity toward long-chain substrates, as implied by structural analysis.  相似文献   

3.
Dextran glucosidase from Streptococcus mutans (SMDG) and Bacillus oligo-1,6-glucosidases, members of glycoside hydrolase family 13 enzymes, have the high sequence similarity. Each of them is specific to alpha-1,6-glucosidic linkage at the non-reducing end of substrate to liberate glucose. The activities toward long isomaltooligosaccharides were different in both enzymes, in which SMDG and oligo-1,6-glucosidase showed high and low activities, respectively. We determined the structural elements essential for high activity toward long-chain substrate. From conformational comparison between SMDG and B. cereus oligo-1,6-glucosidase (three-dimensional structure has been solved), Trp238 and short beta-->alpha loop 4 of SMDG were considered to contribute to the high activity to long-chain substrate. W238A had similar kcat/Km value for isomaltotriose to that for isomaltose, suggesting that the affinity of subsite +2 was decreased by Trp238 replacement. Trp238 mutants as well as the chimeric enzyme having longer beta-->alpha loop 4 of B. subtilis oligo-1,6-glucosidase showed lower preference for long-chain substrates, indicating that both Trp238 and short beta-->alpha loop 4 were important for high activity to long-chain substrates.  相似文献   

4.
Itk is a Tec family tyrosine kinase found in T cells that is activated upon ligation of the T cell receptor (TCR/CD3), CD2, or CD28. Itk contains five domains in addition to the catalytic domain: pleckstrin homology, Tec homology which contains a proline-rich region, Src homology 3, and Src homology 2. To provide a basis for understanding the contribution of these various domains to catalysis, recombinant Itk was purified and its substrate specificity determined by steady-state kinetic methods. Measurements of the rates of phosphorylation of various protein substrates, including Src associated in mitosis 68K protein (SAM68), CD28, linker for activation of T cells, and CD3 zeta, at a fixed concentration indicated that SAM68 was phosphorylated most rapidly. Wild-type Itk and three Itk mutants were characterized by comparing their activity (k(cat)) using the SAM68 substrate. A deletion mutant removing the pleckstrin homology domain and part of the Tec homology domain (Itk(Delta152)) had approximately 10-fold less activity than wild type, a mutant with an altered proline-rich domain (P158A,P159A) had a more dramatic 100-fold loss of activity, and the catalytic domain alone was essentially inactive. Itk(Delta152) had K(m) values for ATP and SAM68 nearly identical to those of the wild-type enzyme, while Itk(P158A,P159A) had approximately 3-fold higher K(m) values for each substrate. SAM68 phosphorylation by the wild-type and mutant enzymes in the presence of several tyrosine kinase inhibitors were compared using a homogeneous time-resolved fluorescence assay. Both the Itk(Delta152) deletion mutant and the Itk(P158A,P159A) mutant had IC(50) values similar to those of the wild-type enzyme for staurosporine, PP1, and damnacanthal. These comparisons, taken together with the similar K(m) values for ATP and SAM68 substrate between the wild-type and the mutant enzymes, indicate that the amino acids in the N-terminal 152 residues and proline-rich domains enhance catalysis by affecting turnover rate rather than substrate binding.  相似文献   

5.
Recent investigations have shown that the rhodanese domains, ubiquitous structural modules which might represent an example of conserved structures with possible functional diversity, are structurally related to the catalytic subunit of Cdc25 phosphatase enzymes. The major difference characterizing the active-site of the Azotobacter vinelandii rhodanese RhdA, with respect to the closely related Cdc25s (A, B, C), is that in Cdc25 phosphatases the active site loop [His-Cys-(X)5-Arg] is one residue longer than in RhdA [His-Cys-(X)4-Arg]. According to the hypothesis that the length of the RhdA active-site loop should play a key role in substrate recognition and catalytic activity, RhdA scaffold was the starting point for producing mutants with single-residue insertion to generate the catalytic loop HCQTHAHR (in RhdA-Ala) and HCQTHSHR (in RhdA-Ser). Analyses of the catalytic performances of the engineered RhdAs revealed that elongation of the catalytic loop definitely compromised the ability to catalyze sulfur transfer reactions, while it generated 'phosphatase' enzymes able to interact productively with the artificial substrate 3-O-methylfluorescein phosphate. Although this study is restricted to an example of rhodanese modules (RhdA), it provided experimental evidence of the hypothesis that a specific mutational event (a single-residue insertion or deletion in the active-site loop) could change the selectivity from sulfur- to phosphate-containing substrates (or vice versa).  相似文献   

6.
The putP gene encodes a proline permease required for Salmonella typhimurium LT2 to grow on proline as the sole source of nitrogen. The wild-type strain is sensitive to two toxic proline analogs (azetidine-2-carboxylic acid and 3,4-dehydroproline) also transported by the putP permease. Most mutations in putP prevent transport of all three substrates. Such mutants are unable to grow on proline and are resistant to both of the analogs. To define domains of the putP gene that specify the substrate binding site, we used localized mutagenesis to isolate rare mutants with altered substrate specificity. The position of the mutations in the putP gene was determined by deletion mapping. Most of the mutations are located in three small (approximately 100-base-pair) deletion intervals of the putP gene. The sensitivity of the mutants to the proline analogs was quantitated by radial streaking to determine the affinity of the mutant permeases for the substrates. Some of the mutants showed apparent changes in the kinetics of the substrates transported. These results indicate that the substrate specificity mutations are probably due to amino acid substitutions at or near the active site of proline permease.  相似文献   

7.
Okuyama M  Kaneko A  Mori H  Chiba S  Kimura A 《FEBS letters》2006,580(11):2707-2711
Escherichia coli YicI, a member of glycoside hydrolase family (GH) 31, is an alpha-xylosidase, although its amino-acid sequence displays approximately 30% identity with alpha-glucosidases. By comparing the amino-acid sequence of GH 31 enzymes and through structural comparison of the (beta/alpha)(8) barrels of GH 27 and GH 31 enzymes, the amino acids Phe277, Cys307, Phe308, Trp345, Lys414, and beta-->alpha loop 1 of (beta/alpha)(8) barrel of YicI have been identified as elements that might be important for YicI substrate specificity. In attempt to convert YicI into an alpha-glucosidase these elements have been targeted by site-directed mutagenesis. Two mutated YicI, short loop1-enzyme and C307I/F308D, showed higher alpha-glucosidase activity than wild-type YicI. C307I/F308D, which lost alpha-xylosidase activity, was converted into alpha-glucosidase.  相似文献   

8.
The molecular basis of chain length specificity of Candida rugosa lipase 1 was investigated by molecular modeling and site-directed mutagenesis. The synthetic lip1 gene and the lipase mutants were expressed in Pichia pastoris and assayed for their chain length specificity in single substrate assays using triglycerides as well as in a competitive substrate assay using a randomized oil. Mutation of amino acids at different locations inside the tunnel (P246F, L413F, L410W, L410F/S300E, L410F/S365L) resulted in mutants with a different chain length specificity. Mutants P246F and L413F have a strong preference for short chain lengths whereas substrates longer than C10 are hardly hydrolyzed. Increasing the bulkiness of the amino acid at position 410 led to mutants that show a strong discrimination of chain lengths longer than C14. The results obtained can be explained by a simple mechanical model: the activity for a fatty acid sharply decreases as it becomes long enough to reach the mutated site. In contrast, a mutation at the entrance of the tunnel (L304F) has a strong impact on C4 and C6 substrates. This mutant is nevertheless capable of hydrolyzing chain lengths longer than C8.  相似文献   

9.
Wang J  Shen WJ  Patel S  Harada K  Kraemer FB 《Biochemistry》2005,44(6):1953-1959
Hormone-sensitive lipase (HSL) is a rate-limiting enzyme in lipolysis that displays broad substrate specificity. HSL function is regulated by reversible phosphorylation that occurs within a 150 aa "regulatory module" of the protein. The current studies used mutational analysis to dissect the contribution of the "regulatory module" in HSL activity and substrate specificity. Deletion of the entire "regulatory module" or replacement of the "regulatory module" with the "lid" of lipoprotein lipase resulted in enzymatically inactive proteins. Deletion of sequentially longer stretches of the "regulatory module" resulted in a stepwise reduction in hydrolytic activity. Analysis of 7-19 amino acid deletional mutants that spanned the "regulatory module" showed that the N-terminal partial deletion mutants retained normal hydrolytic activity and activation by PKA. In contrast, the C-terminal partial deletion mutants displayed reduced hydrolytic activities, with preferential loss of activity against lipid-, as opposed to water-soluble, substrates. Single amino acid mutations of F650C, P651A, and F654D reduced activity against lipid-, but not water-soluble, substrates. The current results suggest that the length of the "regulatory module" and specific sequences within the C-terminal portion of the "regulatory module" of HSL (amino acids 644-683) are crucial for activity and appear to be responsible for determining lipase activity.  相似文献   

10.
In the UapA uric acid-xanthine permease of Aspergillusnidulans, subtle interactions between key residues of the putative substrate binding pocket, located in the TMS8-TMS9 loop (where TMS is transmembrane segment), and a specificity filter, implicating residues in TMS12 and the TMS1-TMS2 loop, are critical for function and specificity. By using a strain lacking all transporters involved in adenine uptake (ΔazgA ΔfcyB ΔuapC) and carrying a mutation that partially inactivates the UapA specificity filter (F528S), we obtained 28 mutants capable of UapA-mediated growth on adenine. Seventy-two percent of mutants concern replacements of a single residue, R481, in the putative cytoplasmic loop TMS10-TMS11. Five missense mutations are located in TMS9, in TMS10 or in loops TMS1-TMS2 and TMS8-TMS9. Mutations in the latter loops concern residues previously shown to enlarge UapA specificity (Q113L) or to be part of a motif involved in substrate binding (F406Y). In all mutants, the ability of UapA to transport its physiological substrates remains intact, whereas the increased capacity for transport of adenine and other purines seems to be due to the elimination of elements that hinder the translocation of non-physiological substrates through UapA, rather than to an increase in relevant binding affinities. The additive effects of most novel mutations with F528S and allele-specific interactions of mutation R481G (TMS10-TMS11 loop) with Q113L (TMS1-TMS2 loop) or T526M (TMS12) establish specific interdomain synergy as a critical determinant for substrate selection. Our results strongly suggest that distinct domains at both sides of UapA act as selective dynamic gates controlling substrate access to their translocation pathway.  相似文献   

11.
Inositol monophosphatase (IMPase) family of proteins are Mg(2+) activated Li(+) inhibited class of ubiquitous enzymes with promiscuous substrate specificity. Herein, the molecular basis of IMPase substrate specificity is delineated by comparative crystal structural analysis of a Staphylococcal dual specific IMPase/NADP(H) phosphatase (SaIMPase - I) with other IMPases of different substrate compatibility, empowered by in silico docking and Escherichia coli SuhB mutagenesis analysis. Unlike its eubacterial and eukaryotic NADP(H) non-hydrolyzing counterparts, the composite structure of SaIMPase - I active site pocket exhibits high structural resemblance with archaeal NADP(H) hydrolyzing dual specific IMPase/FBPase. The large and shallow SaIMPase - I active site cleft efficiently accommodate large incoming substrates like NADP(H), and therefore, justifies the eminent NADP(H) phosphatase activity of SaIMPase - I. Compared to other NADP(H) non-hydrolyzing IMPases, the profound difference in active site topology as well as the unique NADP(H) recognition capability of SaIMPase - I stems from the differential length and orientation of a distant helix α4 (in human and bovine α5) and its preceding loop. We identified the length of α4 and its preceding loop as the most crucial factor that regulates IMPase substrate specificity by employing a size exclusion mechanism. Hence, in SaIMPase - I, the substrate promiscuity is a gain of function by trimming the length of α4 and its preceding loop, compared to other NADP(H) non-hydrolyzing IMPases. This study thus provides a biochemical - structural framework revealing the length and orientation of α4 and its preceding loop as the predisposing factor for the determination of IMPase substrate specificity.  相似文献   

12.
The sorting and assembly machinery (SAM) complex functions in the assembly of beta-barrel proteins into the mitochondrial outer membrane. It is related to the Omp85/YaeT machinery in bacterial outer membranes, but the eukaryotic SAM complex is distinguished by two peripheral subunits, Sam37 and Sam35, that sit on the cytosolic face of the complex. The function of these subunits in beta-barrel protein assembly is currently unclear. By screening a library of sam35 mutants, we show that 13 distinct alleles were each specifically suppressed by overexpression of SAM37. Two of these mutants, sam35-409 and sam35-424, show distinct phenotypes that enable us to distinguish the function of Sam35 from that of Sam37. Sam35 is required for the SAM complex to bind outer membrane substrate proteins: destabilization of Sam35 inhibits substrate binding by Sam50. Sam37 acts later than Sam35, apparently to assist release of substrates from the SAM complex. Very different environments surround bacteria and mitochondria, and we discuss the role of Sam35 and Sam37 in terms of the problems peculiar to mitochondrial protein substrates.  相似文献   

13.
The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.  相似文献   

14.
Phosphagen kinases catalyze the reversible transfer of a phosphate between ATP and guanidino substrates, a reaction that is central to cellular energy homeostasis. Members of this conserved family include creatine and arginine kinases and have similar reaction mechanisms, but they have distinct specificities for different guanidino substrates. There has not been a full structural rationalization of specificity, but two loops have been implicated repeatedly. A small domain loop is of length that complements the size of the guanidino substrate, and is located where it could mediate a lock-and-key mechanism. The second loop contacts the substrate with a valine in the methyl-substituted guanidinium of creatine, and with a glutamate in the unsubstituted arginine substrate, leading to the proposal of a discriminating hydrophobic/hydrophilic minipocket. In the present work, chimeric mutants were constructed with creatine kinase loop elements inserted into arginine kinase. Contrary to the prior rationalizations of specificity, most had measurable arginine kinase activity but no creatine kinase activity or enhanced phosphocreatine binding. Guided by structure, additional mutations were introduced in each loop, recovering arginine kinase activities as high as 15% and 64% of wild type, respectively, even though little activity would be expected in the constructs if the implicated sites had dominant roles in specificity. An atomic structure of the mismatched complex of arginine kinase with creatine and ADP indicates that specificity can also be mediated by an active site that allows substrate prealignment that is optimal for reactivity only with cognate substrates and not with close homologs that bind but do not react.  相似文献   

15.
Human nitrilase-like protein 2 (hNit2) is a putative tumor suppressor, recently identified as ω-amidase. hNit2/ω-amidase plays a crucial metabolic role by catalyzing the hydrolysis of α-ketoglutaramate (the α-keto analog of glutamine) and α-ketosuccinamate (the α-keto analog of asparagine), yielding α-ketoglutarate and oxaloacetate, respectively. Transamination between glutamine and α-keto-γ-methiolbutyrate closes the methionine salvage pathway. Thus, hNit2/ω-amidase links sulfur metabolism to the tricarboxylic acid cycle. To elucidate the catalytic specificity of hNit2/ω-amidase, we performed molecular dynamics simulations on the wild type enzyme and its mutants to investigate enzyme-substrate interactions. Binding free energies were computed to characterize factors contributing to the substrate specificity. The predictions resulting from these computations were verified by kinetic analyses and mutational studies. The activity of hNit2/ω-amidase was determined with α-ketoglutaramate and succinamate as substrates. We constructed three catalytic triad mutants (E43A, K112A, and C153A) and a mutant with a loop 116-128 deletion to validate the role of key residues and the 116-128 loop region in substrate binding and turnover. The molecular dynamics simulations successfully verified the experimental trends in the binding specificity of hNit2/ω-amidase toward various substrates. Our findings have revealed novel structural insights into the binding of substrates to hNit2/ω-amidase. A catalytic triad and the loop residues 116-128 of hNit2 play an essential role in supporting the stability of the enzyme-substrate complex, resulting in the generation of the catalytic products. These observations are predicted to be of benefit in the design of new inhibitors or activators for research involving cancer and hyperammonemic diseases.  相似文献   

16.
Oligoxyloglucan reducing end-specific cellobiohydrolase (OXG-RCBH) is a unique exo-beta-1,4-glucanase that belongs to glycoside hydrolase family 74. The enzyme recognizes the reducing end of xyloglucan oligosaccharides and releases two glucosyl residue segments from the reducing end of the main chain. Previously, we reported that OXG-RCBH consists of two seven-bladed beta-propeller domains. There is a large cleft between the two domains, and a unique loop encloses one side of the active site cleft. Here, we report the X-ray crystal structure of the OXG-RCBH-substrate complex determined to a resolution of 2.4 A. The substrate bound to the cleft, and its reducing end was arranged near the loop region that is believed to impart OXG-RCBH with its activity. We constructed a deletion mutant of the loop region and conducted a detailed analysis. A deletion mutant of the loop region showed endo-activity with altered substrate recognition. More specifically, cleavage occurred randomly instead of at specific sites, most likely due to the misalignment of the substrate within the subsite. We believe that the loop imparts unique substrate specificity with exo-mode hydrolysis in OXG-RCBH.  相似文献   

17.
Autophosphorylation in the activation loop is a common mechanism regulating the activities of protein-tyrosine kinases (PTKs). PTKs in the Csk family, Csk and Chk, are rare exceptions for lacking Tyr residues in this loop. We probed the function of this loop in Csk by extensive site-specific mutagenesis and kinetic studies using physiological and artificial substrates. These studies led to several surprising conclusions. First, specific residues in Csk activation loop had little discernable functions in phosphorylation of its physiological substrate Src, as Ala scanning and loop replacement mutations decreased Csk activity toward Src less than 40%. Second, some activation loop mutants, such as a single residue deletion or replacing all residues with Gly, exhibited 1-2% of wild type (wt) activity toward artificial substrates, but significantly higher activity toward Src. Third, introduction of a thrombin cleavage site to the activation loop also resulted in loss of 98% of wt activity for poly(E4Y) and loss of 95% of wt activity toward Src, but digestion with thrombin to cut the activation loop, resulted in full recovery of wt activity toward both substrates. This suggested that the catalytic machinery is fully functional without the activation loop, implying an inhibitory role by the activation loop as a regulatory structure. Fourth, Arg313, although universally conserved in protein kinases, and essential for the activity of other PTKs so far tested, is not important for Csk activity. These findings provide new perspectives for understanding autophosphorylation as a regulatory mechanism and imply key differences in Csk recognition of artificial and physiological substrates.  相似文献   

18.
Site-specific mutagenesis was employed to study structure-function relationships at the substrate binding site of rat tissue kallikrein. Four kallikrein mutants, the Pro219 deletion (P219del), the 34-38 loop Tyr-Tyr-Phe-Gly to Ile-Asn mutation [YYFG(34-38)IN], the Trp215----Gly exchange (W215G) and the double mutant with Tyr99----His and Trp215----Gly exchange (Y99H:W215G) were created by site-directed mutagenesis to probe their function in substrate binding. The mutant proteins were expressed in Escherichia coli at high levels and analyzed by Western blot. These mutant enzymes were purified to apparent homogeneity. Each migrated as a single band on SDS-PAGE, with slightly lower molecular mass (36 kDa) than that of the native enzyme, (38 kDa) because of their lack of glycosylation. The recombinant kallikreins are immunologically identical to the native enzyme, displaying parallelism with the native enzyme in a direct radioimmunoassay for rat tissue kallikrein. Kinetic analyses of Km and kcat using fluorogenic peptide substrates support the hypothesis that the Tyr99-Trp215 interaction is a major determinant for hydrophobic P2 specificity. The results suggest an important role for the 34-38 loop in hydrophobic P3 affinity and further show that Pro219 is essential to substrate binding and efficient catalysis of tissue kallikrein.  相似文献   

19.
Type I and type II phosphatidylinositol phosphate (PIP) kinases generate the lipid second messenger phosphatidylinositol (PtdIns) 4,5-bisphosphate and thus play fundamental roles in the regulation of many cellular processes. Although the two kinase families are highly homologous, they phosphorylate distinct substrates and are functionally non-redundant. Type I PIP kinases phosphorylate PtdIns 4-phosphate at the D-5 hydroxyl group and are consequently PtdIns 4-phosphate 5-kinases. By contrast, type II PIP kinases are PtdIns 5-phosphate 4-kinases that phosphorylate PtdIns 5-phosphate at the D-4 position. Type I PIP kinases, in addition, also phosphorylate other phosphoinositides in vitro and in vivo and thus have the potential to generate multiple lipid second messengers. To understand how these enzymes differentiate between stereoisomeric substrates, we used a site-directed mutagenesis approach. We show that a single amino acid substitution in the activation loop, A381E in IIbeta and the corresponding mutation E362A in Ibeta, is sufficient to swap substrate specificity between these PIP kinases. In addition to its role in substrate specificity, the type I activation loop is also key in subcellular targeting. The Ibeta(E362A) mutant and other mutants with reduced PtdIns 4-phosphate binding affinity were largely cytosolic when expressed in mammalian cells in contrast to wild-type Ibeta which targets to the plasma membrane. These results clearly establish the role of the activation loop in determining both signaling specificity and plasma membrane targeting of type I PIP kinases.  相似文献   

20.
Substrate and inhibitor binding to dihydrofolate reductase (DHFR) primarily involves residues in the amino-terminal half of the enzyme; however, antibody binding studies performed in this laboratory suggested that the loop region located in the carboxyl terminus of human DHFR (hDHFR; residues 140-186) is involved in conformational changes that occur upon ligand binding and affect enzyme function (Ratnam, M., Tan, X., Prendergast, N.J., Smith, P.L. & Freisheim, J.H. (1988) Biochemistry 27, 4800-4804). To investigate this observation further, site-directed mutagenesis was used to construct deletion mutants of hDHFR missing 1 (del-1), 2 (del-2), 4 (del-4), and 6 (del-6) residues from loops in the carboxyl terminus of the enzyme. The del-1 mutant enzyme has a two-amino acid substitution in addition to the one-amino acid deletion. Deletion of only one amino acid resulted in a 35% decrease in the specific activity of the enzyme. The del-6 mutant enzyme was inactive. Surprisingly, the del-4 mutant enzyme retained a specific activity almost 33% that of the wild type. The specific activity of the del-2 mutant enzyme was slightly higher (38% wild-type activity) than that of the del-4 mutant. All three active deletion mutants were much less stable than the wild-type enzyme, and all three showed at least a 10-fold increase in Km values for both substrates. The del-1 and del-2 mutants exhibited a similar increase in KD values for both substrate and cofactor. The three active deletion mutants lost activity at concentrations of activating agents such as KCl, urea, and p-hydroxymercuribenzoate that continued to stimulate the wild-type enzyme. Antibody binding studies revealed conformational differences between the wild-type and mutant enzymes both in the absence and presence of bound folate. Thus, although the loops near the carboxyl terminus are far removed from the active site, small deletions of this region significantly affect DHFR function, indicating that the loop structure in mammalian DHFR plays an important functional role in its conformation and catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号