首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of insulin-binding and basal (insulin-independent) as well as insulin-stimulated glycogen synthesis from [14C]glucose, net glycogen deposition and glycogen synthase activation by insulin and dexamethasone were studied in primary cultures of adult rat hepatocytes maintained under chemically defined conditions. (1) Insulin receptor number was increased in a dose-dependent fashion by dexamethasone added to the medium between 24 and 48 h of culture and reduced by insulin, whereas ligand affinity remained unaltered. Insulin-induced down-regulation of insulin receptors was not affected by the glucocorticoid. (2) Although the changes in the sensitivity to insulin of glycogen synthesis from glucose and net glycogen deposition paralleled the modulation of the number of insulin receptors, postbinding events appear to be implicated also in the regulation of insulin-sensitivity. (3) Alterations of the responsiveness of glycogen synthesis to insulin caused by the glucocorticoid and/or insulin and by variation between individual rats were inversely related to cellular glycogen contents, suggesting that hepatocellular glycogen content participates in the regulation of insulin-responsiveness of this metabolic pathway. (4) Regulation of insulin-independent glycogenesis in response to an increase from 5 to 10 mM glucose, and of insulin-dependent glycogen synthesis were different. Since the effects of this ‘physiological’ increase in exogenous glucose were small compared to the acute action of insulin, insulin rather than portal venous glucose is considered to represent the prime stimulator of hepatic glycogen synthesis.  相似文献   

2.
Regulation of insulin-binding and basal (insulin-independent) as well as insulin-stimulated glycogen synthesis from [14C]glucose, net glycogen deposition and glycogen synthase activation by insulin and dexamethasone were studied in primary cultures of adult rat hepatocytes maintained under chemically defined conditions. Insulin receptor number was increased in a dose-dependent fashion by dexamethasone added to the medium between 24 and 48 h of culture and reduced by insulin, whereas ligand affinity remained unaltered. Insulin-induced down-regulation of insulin receptors was not affected by the glucocorticoid. Although the changes in the sensitivity to insulin of glycogen synthesis from glucose and net glycogen deposition paralleled the modulation of the number of insulin receptors, postbinding events appear to be implicated also in the regulation of insulin-sensitivity. Alterations of the responsiveness of glycogen synthesis to insulin caused by the glucocorticoid and/or insulin and by variation between individual rats were inversely related to cellular glycogen contents, suggesting that hepatocellular glycogen content participates in the regulation of insulin-responsiveness of this metabolic pathway. Regulation of insulin-dependent glycogen synthesis were different. Since the effects of this 'physiological' increase in exogenous glucose were small compared to the acute action of insulin, insulin rather than portal venous glucose is considered to represent the prime stimulator of hepatic glycogen synthesis.  相似文献   

3.
The effects of a mild heat shock were investigated using cultured 15-day-old fetal rat hepatocytes in which an acute glucocorticoid-dependent glycogenic response to insulin was present. After exposure from 15 min to 2 h at 42.5°C, cell surface [125I]insulin binding progressively decreased down to 60% of the value shown in cells kept at 37°C, due to a decrease in the apparent number of insulin binding sites with little change in insulin receptor affinity. In parallel cultures, protein labeling with [35S]methionine exhibited stimulated synthesis of specific proteins, in particular, 73-kDa Hsc (heat shock cognate) and 72-kDa Hsp (heat shock protein). When cells were returned to 37°C after 2 h at 42.5°C, cell surface insulin binding showed a two-third restoration within 3 h (insulin receptor half-life = 13 h), with similar concomitant return of Hsps72,73 synthesis to preinduction levels. The rate of [14C]glucose incorporation into glycogen measured at 37°C after 1- to 2-h heat treatment revealed a striking yet transient increase in basal glycogenesis (up to 5-fold). At the same time, the glycogenesis stimulation by insulin was reduced (from 3.2 to 1.4—fold), whereas that induced by a glucose load was maintained. Induction of thermotolerance after a first heating was obtained for the heat shock-dependent events except for the enhanced basal glycogenesis. In insulin-unresponsive cells grown in the absence of glucocorticoids, heat shock decreased the glycogenic capacity without modifying the glucose load stimulation, supporting the hypothesis that insulin and thermal stimulation of glycogenesis share at least part of the same pathway. Inverse variations were observed between Hsps72,73 synthesis and both cell surface insulin receptor level and insulin glycogenic response in fetal hepatocytes experiencing heat stress. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Cultured rat hepatocytes were used to characterize the relationship between cellular glycogen content and the basal rate, as well as response to insulin of glycogen synthesis. Depending on the concentration of medium glucose, glycogen-depleted monolayers accumulated glycogen between 24 and 48 h of culture up to the fed in vivo level. Insulin at 100 nM stimulated glycogen deposition 20-fold at 1 mM and 1.5-fold at 50 mM glucose. The rate of further glycogen storage decreased with time and increasing glycogen content. In hepatocytes preincubated with 1-50 mM glucose during 24-48 h, short-term basal and insulin-dependent incorporation of 10 mM [14C]glucose into glycogen was inversely related to the actual cellular glycogen content. This was not due to different intracellular dilution of the label, since the specific radioactivity of UDP-glucose was similar in all groups. 125I-Insulin binding indicated that insulin receptors were also not involved in this phenomenon. An inverse relationship was also found between glycogen content and the stimulation of glycogen synthase I activity by insulin, whereas the basal activity of the enzyme was dissociated from the rate of incorporation of [14C]glucose. Basal net glycogen deposition at 10 mM glucose was also inversely related to cellular glycogen; however, no such relation was evident in the presence of insulin due to the overlapping inhibition of glycogenolysis. These studies suggest that the glycogen-mediated inhibition of the activation of glycogen synthase I is operative in the cultured hepatocyte and leads to an apparent inverse relationship between the actual glycogen content and basal as well as insulin-dependent glycogenesis.  相似文献   

5.
Activation of glycogen synthase in the perfused rat liver is defective in severely diabetic rats. In the present study, activation of glycogen synthase by glucose and increased incorporation of [14C]glucose into glycogen by insulin are defective in hepatocytes isolated from alloxan diabetic rats. Acute activation of glycogen synthase in hepatocytes isolated from diabetic rats was restored by treatment of the rats with insulin in vivo. Restoration of synthase activation was not achieved by incubation of hepatocytes in the presence of insulin in vitro for up to 12 h. When isolated hepatocytes from diabetic rats were placed in primary culture in a serum-free defined medium over a 3-day period, glycogen synthesis was partially restored by cortisol and triiodothyronine and dramatically increased by insulin. Concomitant with restoration of [14C]glycogen synthesis was an insulin-mediated increase in glycogen synthase I and synthase phosphatase activity. Restoration of regulation of glycogen synthesis in primary cultures of hepatocytes from diabetic rats by insulin required the presence of cortisol and triiodothyronine. Primary cultures of hepatocytes from normal rats did not require triiodothyronine for insulin to effect glycogenesis over a 3-day period. These data demonstrate that insulin acts in a chronic manner in concert with other hormones to control synthase phosphatase activity, an effect which may be influencing acute control of hepatic glycogen synthesis.  相似文献   

6.
The relation between changes of insulin receptor and various metabolic responses were studied in adult rat hepatocytes in primary culture. In cells cultured for 3 h without insulin, the number of high affinity sites and the dissociation constant (Kd) of insulin receptor, determined from a Scatchard plot, were 1.05 x 10(5) sites/cell and 1.5 x 10(-9) M, respectively. The receptor number increased 2-fold, but the Kd value remained constant during 2-days culture in insulin-free medium (up-regulation). Addition of dexamethasone (Dex), growth hormone, glucagon or triiodothyronine did not change the number of insulin receptors or the Kd value. In contrast, 1-day culture in insulin (1 x 10(-7) M) medium decreased the receptor number by half (down-regulation) without change of the Kd value. Short-term responses of glycogenesis, amino acid transport and lipogenesis by insulin increased as the receptor number increased. In these cases, the sensitivity to insulin (Ka: half dose for the maximum response) did not change in cells with different receptor numbers, but the maximum response changed. These results show that hepatocytes, unlike adipocytes, do not have spare receptors of insulin. During down-regulation, the receptor number decreased by only half, but the insulin responses were lost almost completely. The receptor number returned to the normal level after culture in insulin-free medium for 12 h, but recovery of the responses took longer, suggesting that for the insulin response not only change of receptor number, but also other regulatory mechanisms for post-receptor processes, such as desensitization, are involved.  相似文献   

7.
We investigated the effect of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator on insulin receptors and insulin action in freshly isolated and primary cultures of rat hepatocytes. PMA (1 x 10–7 M) did not alter insulin receptor numbers or affinity either acutely or chronically but within 60 minute inactivated insulin stimulated tyrosine kinase of the insulin receptor. PKC activation inhibitied insulin (1 x 10–7M) stimulation of glycogen and lipid synthesis with a decrease or no change in basal glycogenesis and lipogenesis respectively. However, PKC activation did not alter insulin stimulated or basal amino acid transport even though PCK activation inhibited insulin stimulation of the insulin. receptor tyrosine kinase. Thus, within one tissue, PKC activation has differential effect on insulin action depending on which pathway is examined. Furthermore, insulin stimulation of the insulin receptor tyrosine kinase may not be a necessary step for all insulin signaling pathways.  相似文献   

8.
The direct effects of insulin and glucose on glycogen accumulation were compared using monolayers of chicken embryo hepatocytes which, when cultured in chemically defined medium without hormones, retain viability for several days but become depleted of glycogen. The data strongly suggest that insulin is the major direct signal for hepatic glycogen synthesis, while glucose supports glycogen accumulation primarily in its role as a substrate. Insulin alone, when added to the cells in physiological concentrations, either shortly after isolation or throughout culture, restored glycogen to the maximal levels found in the liver of the fed chicken. Addition of increasing amounts of glucose in the absence of insulin, in contrast, yielded proportional but limited increases in glycogen deposition attaining not more than 30% of the maximal storage capacity of the cells. This hormone-independent glycogenesis was characterized by a 30-min burst of glycogen deposition immediately following a stepped increase of glucose, with no detectable change in glycogen synthase activity. Insulin-dependent glycogenesis evidenced a much slower rate of glycogen deposition and was accompanied by a near tripling of glycogen synthase activity. Insulin-induced glycogen stores were broken down following removal of the hormone, even when glucose was present in great excess, indicating that the cells require insulin to maintain as well as build up maximal levels of glycogen. In the presence of glucagon, insulin-induced glycogen stores were rapidly degraded, but glucose-induced glycogenesis was not inhibited. The actions of insulin and glucose in this system are both qualitatively and quantitatively similar to those that have been observed in the diabetic animal.  相似文献   

9.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

10.
A protocol was developed in 3T3-L1 adipocytes that resulted in the specific desensitization of glycogen synthase activation by insulin. Cells were pretreated for 15 min with 100 nm insulin, and then recovered for 1.5 h in the absence of hormone. Subsequent basal and insulin-induced phosphorylation of the insulin receptor, IRS-1, MAPK, Akt kinase, and GSK-3 were similar in control and pretreated cells. Additionally, enhanced glucose transport and incorporation into lipid in response to insulin were unaffected. However, pretreatment reduced insulin-stimulated glycogen synthesis by over 50%, due to a nearly complete inhibition of glycogen synthase activation. Removal of extracellular glucose during the recovery period blocked the increase in glycogen levels, and restored insulin-induced glycogen synthase activation. Furthermore, incubation of pretreated 3T3-L1 adipocytes with glycogenolytic agents reversed the desensitization event. Separation of cellular lysates on sucrose gradients revealed that glycogen synthase was primarily located in the dense pellet fraction, with lesser amounts in the lighter fractions. Insulin induced glycogen synthase translocation from the lighter to the denser glycogen-containing fractions. Interestingly, insulin preferentially activated translocated enzyme while having little effect on the majority of glycogen synthase activity in the pellet fraction. In insulin-pretreated cells, glycogen synthase did not return to the lighter fractions during recovery, and thus did not move in response to the second insulin exposure. These results suggest that, in 3T3-L1 adipocytes, the translocation of glycogen synthase may be an important step in the regulation of glycogen synthesis by insulin. Furthermore, intracellular glycogen levels can regulate glycogen synthase activation, potentially through modulation of enzymatic localization.  相似文献   

11.
By influencing the activity of the PI3K/AKT pathway, IL-6 acts as an important regulator of hepatic insulin resistance. miR-200s have been shown to control growth by regulating PI3K, but the role of miR-200s in the development of hepatic insulin resistance remains unclear. The present study showed that elevated serum concentration of IL-6 is associated with decreased levels of miR-200s, impaired activation of the AKT/glycogen synthase kinase (GSK) pathway, and reduced glycogenesis that occurred in the livers of db/db mice. As shown in the murine NCTC 1469 hepatocytes and the primary hepatocytes treated with 10 ng/ml IL-6 for 24 h and in 12-week-old male C57BL/6J mice injected with 16 μg/ml IL-6 by pumps for 7 days, IL-6 administration induced insulin resistance through down-regulation of miR-200s. Moreover, IL-6 treatment inhibited the phosphorylation of AKT and GSK and decreased the glycogenesis. The effects of IL-6 could be diminished by suppression of FOG2 expression. We concluded that IL-6 treatment may impair the activities of the PI3K/AKT/GSK pathway and inhibit the synthesis of glycogen, perhaps via down-regulating miR-200s while augmenting FOG2 expression.  相似文献   

12.
Defective acute regulation of hepatic glycogen synthase by glucose and insulin, caused by severe insulin deficiency, can be corrected in adult rat hepatocytes in primary culture by inclusion of insulin, triiodothyronine, and cortisol in a chemically defined serum-free culture medium over a 3-day period (Miller, T. B., Jr., Garnache, A. K., Cruz, J., McPherson, R. K., and Wolleben, C. (1986) J. Biol. Chem. 261, 785-790). Using primary cultures of hepatocytes isolated from normal and diabetic rats in the same serum-free chemically defined medium, the present study addresses the effects of cycloheximide and actinomycin D on the chronic actions of insulin, triiodothyronine, and cortisol to facilitate the direct effects of glucose on the short-term activation of glycogen synthase. The short-term presence (1 h) of the protein synthesis blockers had no effect on acute activation of glycogen synthase by glucose in primary hepatocyte cultures from normal rats. Normal cells maintained in the presence of cycloheximide or actinomycin D for 2 and 3 days exhibited unimpaired responsiveness to glucose activation of synthase. The protein synthesis inhibitors were effective at blocking the restoration of glucose activation of synthase in diabetic cells in media which restored the activation in their absence. Restoration of glycogen synthase phosphatase activity by insulin, triiodothyronine, and cortisol in primary cultures of diabetic hepatocytes was also blocked by cycloheximide or actinomycin D. These data clearly demonstrate that restoration of acute glycogen synthase activation by glucose and restoration of glycogen synthase phosphatase activity in primary cultures of hepatocytes from adult diabetic rats are dependent upon the synthesis of new protein.  相似文献   

13.
The hyperthyroid state is associated with low hepatic glycogen levels, but paradoxically with a high activity of glycogen synthase and low activity of glycogen phosphorylase. We determined the effects of triiodo-L-thyronine (T3) on glycogen synthesis and glycogen synthase activity in rat hepatocytesin vitro. Culture of rat hepatocytes with T3 (100 nM–1 M) for 16 h–40 h increases glycogen synthesis from glucose and gluconeogenic precursors. The stimulation of glycogen synthesis by T3 was associated with an increase in the activity of glycogen synthase and was additive with the long-term effects of insulin but not with the short-term stimulation of glycogen synthesis by insulin. Culture of hepatocytes with T3 (at concentrations up to 1 M) did not affect the responsiveness of glycogen synthesis to short-term stimulation by insulin but culture with 10 M-T3 decreased the responsiveness to insulin without affecting the basal rate. It is suggested that the high activity of glycogen synthase in the hyperthyroid state is due to a direct effect of T3 on the hepatocyte, but the low hepatic glycogen content is probably due to either secondary metabolite and/or endocrine changes or to impaired responsiveness to insulin. T3 may have an anabolic role in the control of hepatic glycogen storage in the euthyroid postprandial state. (Mol Cell Biol120: 151–158, 1993)Abbreviations T3 triiodo-L-thyronine  相似文献   

14.
The liver is a major insulin‐responsive tissue responsible for glucose regulation. One important mechanism in this phenomenon is insulin‐induced glycogen synthesis. Studies in our laboratory have shown that protein kinase Cs delta (PKCδ) and alpha (α) have important roles in insulin‐induced glucose transport in skeletal muscle, and that their expression and activity are regulated by insulin. Their importance in glucose regulation in liver cells is unclear. In this study we investigated the possibility that these isoforms are involved in the mediation of insulin‐induced glycogen synthesis in hepatocytes. Studies were done on rat hepatocytes in primary culture and on the AML‐12 (alpha mouse liver) cell line. Insulin increased activity and tyrosine phosphorylation of PKCδ within 5 min. In contrast, activity and tyrosine phosphorylation of PKCα were not increased by insulin. PKCδ was constitutively associated with IR, and this was increased by insulin stimulation. Suppression of PKCδ expression by transfection with RNAi, or overexpression of kinase dead (dominant negative) PKCδ reduced both the insulin‐induced activation of PKB/Akt and the phosphorylation of glycogen synthase kinase 3 (GSK3) and reduced significantly insulin‐induced glucose uptake. In addition, treatment of primary rat hepatocytes with rottlerin abrogated insulin‐induced increase in glycogen synthesis. Neither overexpression nor inhibition of PKCα appeared to alter activation of PKB, phosphorylation of GSK3 or glucose uptake in response to insulin. We conclude that PKCδ, but not PKCα, plays an essential role in insulin‐induced glucose uptake and glycogenesis in hepatocytes. J. Cell. Biochem. 113: 2064–2076, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Insulin in the presence of high concentrations of glucose has a beneficial trophic effect on the development of primary cultures of hepatocytes. Compared to the situation observed in hormone-free control cultures, the flattening of the reaggregated hepatocytes is enhanced, and the reconstituted cell trabeculae are enlarged and tend to form a confluent monolayer after 3 days; the survival time is prolonged from 3 to 5 or 6 days. Ultrastructural modifications are also initiated by insulin; numerous glycogen particles appear after 24 h, in between the cisternae of the proliferated smooth endoplasmic reticulum. After 48 h, large amounts of glycogen are stored, and numerous polysomes are present. A small number of cells showed an increased synthesis of lipid droplets in the lumen of the smooth endoplasmic reticulum and form liposomes at the same time. After 72 h, cytolysomes filled with glycogen develop, simulating glycogenosis type II. Simultaneously, microtubules and microfilaments, closely related to numerous polysomes, appear in cytoplasmic extensions constituting undulating membranes. The biochemical data demonstrate that, in the absence of insulin, a high concentration of glucose stimulates glycogenesis and hinders glycogenolysis. This effect of glucose on polysaccharide synthesis is progressively lost. The addition of insulin to the culture induces after 48 and 72 h, a three- to fivefold increase of the glucose incorporation into glycogen, as compared to the controls. The presence of insulin is required to maintain the hepatocyte's capacity to store glycogen. Glycogen synthetase is converted into its active form under the influence of glucose. Insulin increases the rate of activation.  相似文献   

16.
The long-term regulatory effect of insulin on glucose transport activity and glucose transporter expression was examined in Chinese hamster ovary (CHO) transfectants that overexpress either human insulin receptors of the wild type (CHO-R cells) or human insulin receptors mutated at two major autophosphorylation sites, Tyr1162 and Tyr1163 (CHO-Y2 cells). Previous studies showed that, when acutely stimulated by insulin, CHO-Y2 cells exhibit decreased receptor kinase activity along with decreased signaling of several pathways, including that for glucose transport, as compared with CHO-R cells. We now report the following. (i) When treated for 24 h with insulin (10(-10) to 10(-6) M), CHO-R and CHO-Y2 cells displayed closely similar concentration-dependent increases in 2-deoxyglucose uptake. In both transfectants, the maximal insulin-induced increase (approximately 3.5-fold) in uptake was cycloheximide-sensitive and was paralleled by equivalent increases in the levels of GLUT-1 immunoreactive protein and mRNA. (ii) By contrast, under similar conditions, CHO-Y2 cells exhibited a marked decrease in their response to insulin for [U-14C]glucose incorporation into glycogen (decreased sensitivity and maximal responsiveness) and for [U-14C]leucine incorporation into protein (decreased sensitivity) as compared with CHO-R cells. (iii) After a 24-h treatment with 10(-7) M insulin, CHO-R (but not CHO-Y2) cells showed a decreased ability to respond to a subsequent acute insulin stimulation of either receptor exogenous kinase activity or 2-deoxyglucose uptake as compared with respective untreated controls. These results indicate that (i) insulin receptors mutated at Tyr1162 and Tyr1163 retain normal signaling of the long-term stimulatory effect of insulin on glucose transport activity and GLUT-1 expression, but not on glycogenesis and overall protein synthesis; (ii) these three insulin signaling pathways may be triggered by distinct domains of the insulin receptor beta-subunit; and (iii) wild-type (but not twin-tyrosine mutant) receptors undergo negative regulation by chronic insulin treatment for subsequent signaling of acute biological actions of insulin.  相似文献   

17.
To elucidate the effect of nutrition during induction on peripheral muscle responsiveness to insulin, the incorporation of radiolabeled glucose to glycogen and the uptake of radiolabeled deoxyglucose were studied in isolated diaphragms from the fetuses of normal and diabetic pregnant rats in vitro. Basal- and insulin-stimulated incorporation of [1-14C]glucose into diaphragm glycogen were greater in the fetuses of diabetic mothers (IDM) than in normal fetuses, but there was no difference in the degree of stimulation by insulin of labeled glucose into glycogen between normal fetuses and IDM. Diaphragms from normal fetuses and IDM had the same basal uptake of 2-deoxy-[1-3H]glucose as well as insulin-stimulated uptake. Consequently the sensitivity of glucose uptake to insulin was similar both in normal fetuses and IDM. These data indicate that glucose utilization (incorporation of labeled glucose into glycogen) was increased in IDM, but that the response of glucose uptake and glycogenesis to insulin was not altered.  相似文献   

18.
Recently, it is implicated that aberrant expression of microRNAs (miRs) is associated with insulin resistance. However, the role of miR‐17 family in hepatic insulin resistance and its underlying mechanisms remain unknown. In this study, we provided mechanistic insight into the effects of miR‐20a‐5p, a member of miR‐17 family, on the regulation of AKT/GSK pathway and glycogenesis in hepatocytes. MiR‐20a‐5p was down‐regulated in the liver of db/db mice, and NCTC1469 cells and Hep1‐6 cells treated with high glucose, accompanied by reduced glycogen content and impaired insulin signalling. Notably, inhibition of miR‐20a‐5p significantly reduced glycogen synthesis and AKT/GSK activation, whereas overexpression of miR‐20a‐5p led to elevated glycogenesis and activated AKT/GSK signalling pathway. In addition, miR‐20a‐5p mimic could reverse high glucose‐induced impaired glycogenesis and AKT/GSK activation in NCTC1469 and Hep1‐6 cells. P63 was identified as a target of miR‐20a‐5p by bioinformatics analysis and luciferase reporter assay. Knockdown of p63 in the NCTC1469 cells and the Hep1‐6 cells by transfecting with siRNA targeting p63 could increase glycogen content and reverse miR‐20a‐5p inhibition‐induced reduced glycogenesis and activation of AKT and GSK, suggesting that p63 participated in miR‐20a‐5p‐mediated glycogenesis in hepatocytes. Moreover, our results indicate that p63 might directly bind to p53, thereby regulating PTEN expression and in turn participating in glycogenesis. In conclusion, we found novel evidence suggesting that as a member of miR‐17 family, miR‐20a‐5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression.  相似文献   

19.
Insulin-stimulated glycogenesis and insulin degradation were studied simultaneously at 37 degrees C in cultured foetal hepatocytes grown for 2-3 days in the presence of cortisol. Degradation of cell-associated insulin, as measured by trichloroacetic acid precipitation, was significant after 4 min in the presence of 1-3 nM-125I-labelled insulin. This process became maximal (30% of insulin degraded) after 20 min, a time when binding-state conditions were achieved. No insulin-degradative activity was detected in a medium that had been exposed to cells. At steady-state, the appearance of insulin degradation products in the medium was linearly dependent on time (1.5 fmol/min per 10(6) cells at 1nM-125I-labelled insulin). Chloroquine (3-50 microM), bacitracin (0.1-10 mM) and NH4Cl (1-10 mM) inhibited insulin degradation as soon as this became detectable and caused an increase in the association of insulin to hepatocytes after 20 min. Lidocaine and dansylcadaverine had similar effects, whereas N-ethylmaleimide, aprotinin, phenylmethanesulphonyl fluoride and leupeptin were found to be ineffective. Chloroquine, and also bacitracin, at concentrations that inhibited insulin degradation, decreased the insulin-stimulated incorporation of [14C]glucose into glycogen over 2 h. This effect of chloroquine was specific, since it did not modify the basal glycogenesis, or the glycogenic effect of a glucose load in the absence of insulin. It therefore appears that the receptor-mediated insulin degradation (or some associated pathway) is functionally related to the glycogenic effect of insulin in foetal hepatocytes.  相似文献   

20.
Incubation of primary cultures of rat hepatocytes with the local anesthetics, procaine or lidocaine, had little or no effect on insulin uptake or degradation but caused an inhibition of insulin-stimulated glycogenesis. While exposure of cultures to the amines, monodansylcadaverine or CH3NH2, resulted in significant dose-dependent decreases in glycogenesis, only monodansylcadaverine (an inhibitor of receptor clustering) decreased uptake whereas CH3NH2 (a lysosomotropic agent) caused increases in both insulin uptake and degradation. When cells were treated with agents which inhibit glycolysis (NaF, 2-deoxy-D-glucose) or oxidative metabolism (2,4-dinitrophenol, carbonyl cyanide m-chlorophenyl hydrazone, NaN3, antimycin A), pronounced inhibitions of each of the bioactivities studied (syntheses of glycogen, protein, lipid) were observed, but only the glycolytic inhibitors decreased insulin uptake. These results suggest that insulin is internalized by an endocytotic process involving receptor clustering and requiring metabolic energy derived from glycolysis. The post-receptor biosynthetic processes involved in the expression of the biological activities of insulin (syntheses of glycogen, protein, lipid) require energy produced by oxidative metabolism while the degradation of insulin is carried out by nonlysosomal mechanisms which are not energy-requiring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号