首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Gao  J Boyd  R J Williams  G J Pielak 《Biochemistry》1990,29(30):6994-7003
Resonance assignments for the main-chain, side-chain, exchangeable side chain, and heme protons of the C102T variant of Saccharomyces cerevisiae iso-1-cytochrome c in both oxidation states (with the exception of Gly-83) are reported. (We have also independently assigned horse cytochrome c.) Some additional assignments for the horse protein extend those of Wand and co-workers [Wand, A. J., Di Stefano, D. L., Feng, Y., Roder, H., & Englander, S. W. (1989) Biochemistry 28, 186-194; Feng, Y., Roder, H., Englander, S. W., Wand, A. J., & Di Stefano, D. L. (1989) Biochemistry 28, 195-203]. Qualitative interpretation of nuclear Overhauser enhancement data allows the secondary structure of these two proteins to be described relative to crystal structures. Comparison of the chemical shift of the backbone protons of the C102T variant and horse protein reveals significant differences resulting from amino acid substitution at positions 56 and 57 and further substitutions between residue 60 and residue 69. Although the overall folding of yeast iso-1-cytochrome c and horse cytochrome c is very similar, there can be large differences in chemical shift for structurally equivalent residues. Chemical shift differences of amide protons (and to a lesser extent alpha protons) represent minute changes in hydrogen bonding. Therefore, great care must be taken in the use of differences in chemical shift as evidence for structural changes even between highly homologous proteins.  相似文献   

2.
The CYBA gene variants have been inconsistently associated with coronary heart disease (CHD) risk. A case-control study was conducted genotyping 619 subjects to explore the contribution of C242T and A640G to CHD risk in the population. A significant risk was found associated with GG homozygosity (odds ratio (OR) 2.132, 95% confidence interval, 1.113-4.085). The C242T variant was associated with CHD risk in women. Bias due to population stratification was analysed. Phenotype changes linked to these polymorphisms were evaluated. Superoxide measurements revealed higher production as indicated by the presence of the G and T alleles. Differences in mRNA concentration in heterozygous A640G samples were analysed. Higher levels of G allele mRNA compared with A allele mRNA were found. NAD(P)H oxidase p22phox sub-unit expression was evaluated with Western blot. Experiments revealed a gradual relationship in p22phox protein expression according to genotypes of the analysed variants. Those GG TT double homozygous showed increased p22phox protein expressions regarding AA CC double homozygous. This study has demonstrated increased expression and activity of the NAD(P)H system components during atherogenesis and the results could help explain the relevance of the A640G variant as a CHD marker.  相似文献   

3.
We have determined the structures and thermodynamic stabilities of the wild type Asn-52 and unusually thermostable mutant Ile-52 yeast iso-1-cytochromes c (Das, G., Hickey, D. R. McLendon, D., McLendon, G., and Sherman, F. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 496-499). Although both structures were similar, Water-166, buried within the wild type protein, is excluded from the Ile-52 mutant, which substantially reorganizes the local hydrogen bonding. Wild type Cys-102 was replaced with alanine or serine to eliminate dimerization in vitro. The Cys-102 (wild type), Ala-102, and Ser-102 proteins were equally stable, whereas the chemically modified Cys-102-SCH3 was less stable. The order of stability observed with replacements at positions 52 and 102 was as follows: Ile-52 Ala-102 greater than Ala-52 Ala-102 greater than Asn-52 Ala-102 ("normal") greater than Gly-52 Ala-102. No significant stabilization was attributed to potential energy interactions expressed as helix-forming propensities of replacements at position 52. A high correlation between differences in free energy changes and transfer free energies suggests hydrophobic interactions are the main factor for enhancing stability in the Ile-52 mutant. Additional possible contributions to the thermostability of the Ile-52 variant are energetic effects due to packing and hydrogen bonding changes surrounding position 52.  相似文献   

4.
The properties of three HbA variants with different mutations at the beta102 position, betaN102Q, betaN102T, and betaN102A, have been examined. All three are inhibited in their ligand-linked transition from the low affinity T quaternary state to the high affinity Re quaternary state. In the presence of inositol hexaphosphate, IHP, none of them exhibits cooperativity in the binding of oxygen. This is consistent with the destabilization of the Re state as a result of the disruption of the hydrogen bond that normally forms between the beta102 asparagine residue and the alpha94 aspartate residue in the Re state. However, these three substitutions also alter the properties of the T state of the hemoglobin tetramer. In the presence of IHP, the first two substitutions result in large increases in the ligand affinities of the beta-subunits within the T state structure. The betaN102A variant, however, greatly reduces the pH dependencies of the affinities of the alpha and beta subunits, K1(alpha) and K1(beta), respectively, for the binding of the first oxygen molecule in the absence of IHP. In the presence of IHP, the T state of this variant is strikingly similar to that of HbA under the same conditions. For both hemoglobins, K1(alpha) and K1(beta) exhibit only small Bohr effects. In the absence of IHP, the affinities of the alpha and beta subunits of HbA for the first oxygen are increased, and both exhibit greatly increased Bohr effects. However, in contrast to the behavior of HbA, the ligand-binding properties of the T state tetramer of the betaN102A variant are little affected by the addition or removal of IHP. It appears that along with its effect on the stability of the liganded Re state, this mutation has an effect on the T state that mimics the effect of adding IHP to HbA. It inhibits the set of conformational changes, which are coupled to the K1 Bohr effects and normally accompany the binding of the first ligand to the HbA tetramer in the absence of organic phosphates.  相似文献   

5.
The repair of free-radical oxidative DNA damage is carried out by lesion-specific DNA glycosylases as the first step of the highly conserved base excision repair (BER) pathway. In humans, three orthologs of the prototypical endonuclease VIII (Nei), the Nei-like NEIL1-3 enzymes are involved in the repair of oxidized DNA lesions. In recent years, several genome and cancer single-nucleotide polymorphic variants of the NEIL1 glycosylase have been identified. In this study we characterized four variants of human NEIL1: S82C, G83D, P208S, and ΔE28, and tested their ability to excise pyrimidine-derived lesions such as thymine glycol (Tg), 5-hydroxyuracil (5-OHU), and dihydrouracil (DHU) and the purine-derived guanidinohydantoin (Gh), spiroiminodihydantoin 1 (Sp1), and methylated 2,6-diamino-4-hydroxy-5-formamidopyrimidine (MeFapyG). The P208S variant has near wild-type activity on all substrates tested. The S82C and ΔE28 variants exhibit decreased Tg excision compared to wild-type. G83D displays little to no activity with any of the substrates tested, with the exception of Gh and Sp1. Human NEIL1 is known to undergo editing whereby the lysine at position 242 is recoded into an arginine. The non-edited form of NEIL1 is more efficient at cleaving Tg than the R242 form, but the G83D variant does not cleave Tg regardless of the edited status of NEIL1. The corresponding G86D variant in Mimivirus Nei1 similarly lacks glycosylase activity. A structure of a G86D–DNA complex reveals a rearrangement in the β4/5 loop comprising Leu84, the highly-conserved void-filling residue, thereby providing a structural rationale for the decreased glycosylase activity of the glycine to aspartate variant.  相似文献   

6.
Wild-type iso-1-cytochrome c from Saccharomyces cerevisiae containing naturally occurring cysteine at position 102 and mutated protein S47C (derived from the protein in which C102 had been replaced by threonine) were labeled with cysteine-specific methanethiosulfonate spin label. Continuous wave (CW) electron paramagnetic resonance (EPR) was used to examine the effect of temperature on the behavior of the spin label in the oxidized and reduced forms of wild-type cytochrome c and in the oxidized form of the mutated protein. The computer simulations revealed that the CW EPR spectrum for each form of cytochrome c consists of at least two components [a fast (F) and a slow (S) component], which differ in the values of the rotational correlation times tauRparallel (longitudinal rotational correlation time) and tauRperpendicular (transverse rotational correlation time) and that the relative contributions of the F and S components of the spectra change with temperature. In addition, the values of the rotational correlation times (tauRparallel and tauRperpendicular) for the F component appear to change much more dramatically with the temperature than the respective values for the S component. A large difference between the behavior of the oxidized and reduced wild-type spin-labeled cytochromes c indicates that the temperature-induced unfolding of the protein in the region around C102 progresses more rapidly when cytochrome c is in the oxidized form.  相似文献   

7.
In mammalian cells, the repair of DNA bases that have been damaged by reactive oxygen species is primarily initiated by a series of DNA glycosylases that include OGG1, NTH1, NEIL1, and NEIL2. To explore the functional significance of NEIL1, we recently reported that neil1 knock-out and heterozygotic mice develop the majority of symptoms of metabolic syndrome (Vartanian, V., Lowell, B., Minko, I. G., Wood, T. G., Ceci, J. D., George, S., Ballinger, S. W., Corless, C. L., McCullough, A. K., and Lloyd, R. S. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 1864-1869). To determine whether this phenotype could be causally related to human disease susceptibility, we have characterized four polymorphic variants of human NEIL1. Although three of the variants (S82C, G83D, and D252N) retained near wild type levels of nicking activity on abasic (AP) site-containing DNA, G83D did not catalyze the wild type beta,delta-elimination reaction but primarily yielded the beta-elimination product. The AP nicking activity of the C136R variant was significantly reduced. Glycosylase nicking activities were measured on both thymine glycol-containing oligonucleotides and gamma-irradiated genomic DNA using gas chromatography/mass spectrometry. Two of the polymorphic variants (S82C and D252N) showed near wild type enzyme specificity and kinetics, whereas G83D was devoid of glycosylase activity. Although insufficient quantities of C136R could be obtained to carry out gas chromatography/mass spectrometry analyses, this variant was also devoid of the ability to incise thymine glycol-containing oligonucleotide, suggesting that it may also be glycosylase-deficient. Extrapolation of these data suggests that individuals who are heterozygous for these inactive variant neil1 alleles may be at increased risk for metabolic syndrome.  相似文献   

8.
RGS3 belongs to a family of the regulators of G protein signaling (RGS). We previously demonstrated that cytosolic RGS3 translocates to the membrane to inhibit G(q/11) signaling (Dulin, N. O., Sorokin, A., Reed, E., Elliott, S., Kehrl, J., and Dunn, M. J. (1999) Mol. Cell. Biol. 19, 714-723). This study examines the properties of a recently identified truncated variant termed RGS3T. Both RGS3 and RGS3T bound to endogenous Galpha(q/11) and inhibited endothelin-1-stimulated calcium mobilization and mitogen-activated protein kinase activity to a similar extent. However, unlike cytosolically localized RGS3, RGS3T was found predominantly in the nucleus and partially in the plasma membrane. Furthermore, RGS3T, but not RGS3, caused cell rounding and membrane blebbing. Finally, 44% of RGS3T-transfected cells underwent apoptosis after serum withdrawal, which was significantly higher than that of RGS3-transfected cells (7%). Peptide sequence analysis revealed two potential nuclear localization signal (NLS) sequences in RGS3T. Further truncation of the RGS3T N terminus containing putative NLSs resulted in a significant reduction of nuclear versus cytoplasmic staining of the protein. Moreover, this truncated RGS3T no longer induced apoptosis. In summary, RGS3 and its truncated variant RGS3T are similar in their ability to inhibit G(q/11) signaling but are different in their intracellular distribution. These data suggest that, in addition to being a GTPase-activating protein, RGS3T has other distinct functions in the nucleus of the cell.  相似文献   

9.
10.
The backbone dynamics of ferricytochrome b(562), a four-helix bundle protein from Escherichia coli, have been studied by NMR spectroscopy. The consequences of the introduction of a c-type thioether linkage between the heme and protein and the reduction to the ferrous cytochrome have also been analyzed. (15)N relaxation rates R(1) and R(2) and (1)H-(15)N NOEs were measured at proton Larmor frequencies of 500 and 600 MHz for the oxidized and reduced protein as well as for the oxidized R98C variant. In the latter protein, an "artificial" thioether covalent bond has been introduced between the heme group and the protein frame [Arnesano, F., Banci, L., Bertini, I., Ciofi-Baffoni, S., de Lumley Woodyear, T., Johnson, C. M., and Barker, P. D. (2000) Biochemistry 39, 1499-1514]. The (15)N relaxation data were analyzed with the ModelFree protocol, and the mobility parameters on the picosecond to nanosecond time scale were compared for the three species. The three forms are rather rigid as a whole, with average generalized order parameters values of 0.87 +/- 0.08 (oxidized cytochrome b(562)), 0.84 +/- 0.07 (reduced cytochrome b(562)), and 0.85 +/- 0.07 (oxidized R98C cytochrome b(562)), indicating similar mobility for each system. Lower order parameters (S(2)) are found for residues belonging to loops 1 and 2. Higher mobility, as indicated by lower order parameters, is found for heme binding helices alpha 1 and alpha 4 in the R98C variant with respect to the wild-type protein. The analysis requires a relatively long rotational correlation time (tau(m) = 9.6 ns) whose value is accounted for on the basis of the anisotropy of the molecular shape and the high phosphate concentration needed to ensure the occurrence of monomer species. A parallel study of motions in the millisecond to microsecond time scale has also been performed on oxidized wild-type and R98C cytochrome b(562). In a CPMG experiment, decay rates were analyzed in the presence of spin-echo pulse trains of variable spacing. The dynamic behavior on this time scale is similar to that observed on the sub-nanosecond time scale, showing an increased mobility in the residues connected to the heme ligands in the R98C variant. It appears that the increased protein stability of the variant, established previously, is not correlated with an increase in rigidity.  相似文献   

11.
Analysis of the conservation of functional residues between yeast and Escherichia coli inorganic pyrophosphatases (PPases) suggested that Asp-97, Glu-98, Asp-102, and Lys-104 are important for the action of E. coli PPase [Lahti, R., Kolakowski, L. F., Heinonen, J., Vihinen, M., Pohjanoksa, K., & Cooperman, B. S. (1990) Biochim. Biophys. Acta 1038, 338-345]. We replaced these four residues by oligonucleotide-directed mutagenesis, giving variant PPases DV97, DE97, EV98, DV102, DE102, KI104, and KR104. PPase variants DV97, DV102, and KI104 had no enzyme activity, whereas PPase variants DE97, EV98, DE102, and KR104 had 22%, 33%, 3%, and 3% of the wild-type PPase activity, respectively. This suggests that Asp-97, Asp-102, and Lys-104 are essential for the catalytic activity of E. coli PPase. PPase variants DV98 and KR104 also had an increased sensitivity to heat denaturation; incubation of these mutant PPases at 75 degrees C for 15 min in the presence of 5 mM magnesium ion decreased the activity to 20% and 1%, respectively, of the initial value while 74% of the activity was observed with wild-type PPase. Furthermore, these thermolabile mutant PPases displayed the most profound conformational changes of the PPase variants examined, as demonstrated by the binding of the fluorescent dye Nile red that monitors the hydrophobicity of protein surfaces. Accordingly, Glu-98 and Lys-104 seem to be important for the structural integrity of E. coli PPase.  相似文献   

12.
Human alpha1-acid glycoprotein (AAG) is a mixture of at least two genetic variants, the A variant and the F1 and/or S variant or variants, which are encoded by two different genes. AAG is also an extensively glycosylated protein which possesses five N-linked glycans exhibiting substantial heterogeneity in their structures. The first objective of this study was to investigate the glycosylation of the two major gene products of AAG, i.e. the A variant and a mixture of the F1 and S variants (F1*S). To this end, we combined a chromatographic method for the fractionation of the AAG variants with a lectin-binding assay to characterise the glycosylation of purified glycoproteins. Secondly, because the oligosaccharides can influence the disposition of AAG, a kinetic study of the AAG variants was carried out in the rat. After intravenous administration of whole human AAG, the separation and quantification of the AAG variants in plasma was performed by application of specific methods by isoelectric focusing and immunonephelometry. The binding studies carried out on a panel of lectins showed significant differences in the lectin-binding characteristics of the separated F1*S and A variants, accounting for differences in the degree of branching of their glycan chains and substitution with sialic acid and fucose. The plasma concentration-time profiles of the F1*S and A variants were biphasic, and only small differences were observed between the variants for their initial and terminal half-lives, clearance and distribution volume. This indicates that the structural differences between the two AAG gene products do not affect their pharmacokinetics in the rat. Specific drug transport roles have been previously demonstrated for the F1*S and A variants, calling for further investigations into their effects on the disposition of drugs they bind in plasma. The present study shows that such investigations are possible without being complicated by kinetic differences between these variants.  相似文献   

13.
Several preclinical and clinical studies suggest the importance of naturally occurring polymorphisms of drug transporters in the individual difference of drug response. To functionally validate the nonsynonymous polymorphisms of ABCB1 (P-glycoprotein/MDR1) in vitro, we generated SNP variant forms (i.e., S400N, R492C, R669C, I849M, A893P, A893S, A893T, M986V, A999T, P1051A, and G1063A) and expressed them in Sf9 cells. The kinetic properties (Km and Vmax) of those variants were analyzed by measuring the ATPase activity to obtain the ATPase profile for each variant toward structurally unrelated substrates. On the basis of the experimental data, we determined the substrate specificity of ABCB1 WT and its variants by the quantitative structure-activity relationship (QSAR) analysis method. While several SNP variants appeared to influence the substrate specificity of ABCB1, the nonsynonymous polymorphisms of 2677G > T, A, or C at amino acid position 893 (Ala > Ser, Thr, or Pro) have great impacts on both the activity and the substrate specificity of ABCB1. The A893P variant (2677G > C), a rare mutation, exhibited markedly high activity of ATPase toward different test compounds. Molecular dynamics (MD) simulation based on a three-dimensional structural model of human ABCB1 revealed that multiple kinks are formed in the intracellular loop between transmembrane domains 10 and 11 of the A893P variant (2677G > C) protein. The polymorphisms of 2677G, 2677T, and 2677A exhibit wide ethnic differences in the allele frequency, and these nonsynonymous polymorphisms are suggested to be clinically important because of their altered ATPase activity and substrate specificity toward different drugs.  相似文献   

14.
To see k information on T cell recognition of Mlsa determinants, hybridomas were prepared from a well-characterized F23.2+ (V beta 8.2+) T cell clone specific for three different ligands, i.e., 1) Mlsa determinants, 2) fowl gamma-globulin (F gamma G) plus self-H-2 (H-2d), and 3) allo-H-2, e.g., H-2p, determinants. Fusion of the clone to the BW5147 thymoma line produced a triple-reactive T hybridoma which generated two types of spontaneous variants. One type of variant (type I) lost Mlsa reactivity but retained reactivity to both F gamma G/H-2d and allo-H-2p. These variants, which were generated at high frequency, stained strongly with a mAb, A1.57, with idiotypic specificity for the TCR molecules of the parental clone. The second type of variant (type II) reacted to Mlsa determinants but showed no reactivity to F gamma G/H-2d or to allo-H-2p. These variants failed to express the A1.57 idiotypic determinants of the parent clone, but were F23.2+ (V beta 8.2+); nonequilibrium pH gradient electrophoresis analysis suggested that these hybrids expressed a mixed TCR heterodimer composed of the parental clone beta-chain and the BW5147 alpha-chain. Three aspects of the data are very difficult to accommodate with the view that Mlsa, F gamma G, and allo-H-2 determinants are all recognized via a common TCR molecule: 1) the independent (and frequent) segregation of Mlsa reactivity from F gamma G/H-2d and allo-H-2p reactivity, 2) the retention of Mlsa reactivity by the type II variants despite loss of the parental clone alpha-chain, and 3) the loss of Mlsa reactivity by the type I variants despite high expression of the A1.57+ TcR molecules derived from the parental clone. The data support a model in which Mlsa determinants are recognized by a separate T cell structure, which we envisage as a monomorphic accessory molecule unrelated to the TCR. Since the type II hybridoma variants invariably retained quantitatively normal TcR expression, the triggering phase of anti-Mlsa responses appears to be TCR dependent. The model we favor is that anti-Mlsa/Mlsa interaction increases TCR binding with Ia epitopes to above the threshold required for cell triggering. A key feature of this model is that Mlsa and Ia determinants are recognized as separate structures rather than as a complex.  相似文献   

15.
In two recent papers, we reported the effects of several point mutations on the thermodynamics of the thermal unfolding of the lysozyme of phage T4 as determined by differential scanning calorimetry. The mutants studied were R96H [Kitamura, S., & Sturtevant, J.M. (1989) Biochemistry 28, 3788-3792] and T157 replaced by A, E, I, L, N, R, and V [Connelly, P., Ghosaini, L., Hu, C.-Q., Kitamura, S., Tanaka, A., & Sturtevant, J.M. (1991) Biochemistry 30, 1887-1891]. Here we report the results of a similar study of the single mutations A82P, A93P, and G113A and the double mutation C54T:C97A. The three single mutants all show small apparent stabilization at pH 2.5 and 46.2 degrees C (the denaturational temperature of the wild-type protein), amounting to -0.5 +/- 0.4 kcal mol-1 in free energy, whereas the double mutant shows a weak apparent destabilization, +0.8 +/- 0.4 kcal mol-1. As in all our previous studies of mutant proteins, the enthalpy changes produced by these mutations are in general of much larger magnitude than the corresponding free energy changes and frequently of opposite sign.  相似文献   

16.
We reported here the clinical and molecular characterization of a Chinese subject with childhood-onset hearing impairment. Clinical evaluations showed that the patient suffered from profound and non-syndromic sensorineural hearing loss with flat configurations. Sequence analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes led to the identification of double deafness-associated mutations of A1555G and T1095C in the 12S rRNA gene which apparently in the homoplasmic forms. In additional, there was no other functionally significant nucleotide variants found in this subject. As previous studies have indicated that the A1555G mutation was a primary contributing factor underlying the development of deafness but not sufficient to produce clinical phenotype, the co-segregation of two mitochondrial DNA mutations raises the possibility that the T to C transition at position 1095 plays a role in the phenotypic expression of deafness-associated A1555G mutation. Actually, the T1095C mutation disrupted an evolutionarily conserved base-pair at stem-loop of helix 25 of 12S rRNA, resulting in impaired translation in mitochondrial protein synthesis and a significant reduction of cytochrome c oxidase activity. As a result, it may enhance the biochemical defect in patient carrying the A1555G mutation, thus changing the age of onset and the severity of hearing impairment.  相似文献   

17.
Hydrogen-exchange rates were measured for RNase T1 and three variants with Ala --> Gly substitutions at a solvent-exposed (residue 21) and a buried (residue 23) position in the helix: A21G, G23A, and A21G + G23A. These results were used to measure the stabilities of the proteins. The hydrogen-exchange stabilities (DeltaG(HX)) for the most stable residues in each variant agree with the equilibrium conformational stability measured by urea denaturation (DeltaG(U)), if the effects of D(2)O and proline isomerization are included [Huyghues-Despointes, B. M. P., Scholtz, J. M., and Pace, C. N. (1999) Nat. Struct. Biol. 6, 210-212]. These residues also show similar changes in DeltaG(HX) upon Ala --> Gly mutations (DeltaDeltaG(HX)) as compared to equilibrium measurements (DeltaDeltaG(U)), indicating that the most stable residues are exchanging from the globally unfolded ensemble. Alanine is stabilizing compared to glycine by 1 kcal/mol at a solvent-exposed site 21 as seen by other methods for the RNase T1 protein and peptide helix [Myers, J. K., Pace, C. N., and Scholtz, J. M. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 3833-2837], while it is destabilizing at the buried site 23 by the same amount. For the A21G variant, only local NMR chemical shift perturbations are observed compared to RNase T1. For the G23A variant, large chemical shift changes are seen throughout the sequence, although X-ray crystal structures of the variant and RNase T1 are nearly superimposable. Ala --> Gly mutations in the helix of RNase T1 at both helical positions alter the native-state hydrogen-exchange stabilities of residues throughout the sequence.  相似文献   

18.
Niemann-Pick C1-like 1 (NPC1L1) is an essential protein for dietary cholesterol absorption. Nonsynonymous (NS) variants of NPC1L1 in humans have been suggested to associate with cholesterol absorption variations. However, information concerning the characteristics and mechanism of these variants in cholesterol uptake is limited. In this study, we analyzed the cholesterol uptake ability of the 19 reported NS variants of NPC1L1 identified from cholesterol low absorbers. Among these variants, L110F, R306C, A395V, G402S, T413M, R693C, R1214H, and R1268H could partially mediate cellular cholesterol uptake and were categorized as partially dysfunctional variants. The other 11 variants including T61M, N132S, D398G, R417W, G434R, T499M, S620C, I647N, G672R, S881L, and R1108W could barely facilitate cholesterol uptake, and were classified into the severely dysfunctional group. The partially dysfunctional variants showed mild defects in one or multiple aspects of cholesterol-regulated recycling, subcellular localization, glycosylation, and protein stability. The severely dysfunctional ones displayed remarkable defects in all these aspects and were rapidly degraded through the ER-associated degradation (ERAD) pathway. In vivo analyses using adenovirus-mediated expression in mouse liver confirmed that the S881L variant failed to localize to liver canalicular membrane, and the mice showed defects in biliary cholesterol re-absorption, while the G402S variant appeared to be similar to wild-type NPC1L1 in mouse liver. This study suggests that the dysfunction of the 19 variants on cholesterol absorption is due to the impairment of recycling, subcellular localization, glycosylation, or stability of NPC1L1.  相似文献   

19.
The assembly pathway of small nuclear ribonucleoprotein (snRNP) particles in the cytoplasm of L929 mouse fibroblasts was analyzed by observing the nuclear accumulation of snRNP proteins. Immunoprecipitations of nuclear and cytoplasmic fractions after a pulse label and chase indicate that the snRNP D, E, F, and G proteins assemble first, followed by the small nuclear RNA (snRNA), then the snRNP B protein and, in the case of the U1 snRNP, the A and C proteins. The snRNP B' protein is not detected in the L929 cells. The U1-specific A and C proteins can enter the nucleus in the absence of snRNP assembly, suggesting that these proteins exchange on the mature nuclear snRNP particles. Two-dimensional electrophoresis using nonequilibrium pH gradient electrophoresis identifies the A, B, B", C, D, E, F, and G proteins in a distribution similar to that reported previously by immunoprecipitation (Sauterer, R. A., and Zieve, G. W. (1989) J. Biol. Chem., submitted for publication). The D protein appears in multiple isoelectric variants in the cytoplasm and shifts toward more basic variants during maturation. Kinetic experiments analyzed by two-dimensional electrophoresis indicate a quantitative maturation of the cytoplasmic B protein into nuclear particles. Quantitative densitometry of immunoprecipitated stable nuclear snRNPs labeled with [35S] methionine corrected for the published methionine content of the A, B, C, D, and E proteins indicates that the mature nuclear U1 snRNP probably contains four copies of D, two copies each of B, C, and A, and one copy of E.  相似文献   

20.
We have identified previously a novel complex mutant allele in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in a patient affected with cystic fibrosis (CF). This allele contained a mutation in CFTR exon 11 known to cause CF (S549R(T>G)), associated with the first alteration described so far in the minimal CFTR promoter region (-102T>A). Studies on genotype-phenotype correlations revealed striking differences between patients carrying mutation (S549R(T>G)) alone, who had a severe disease, and patients carrying the complex allele (-102(T>A)+S549R(T>G)), who exhibited milder forms of CF. We thus postulated that the sequence change (-102T>A) may attenuate the effects of the severe (S549R(T>G)) mutation through regulation of CFTR expression. Analysis of transiently transfected cell lines with wild-type and -102A variant human CFTR-directed luciferase reporter genes demonstrates that constructs containing the -102A variant (which creates a Yin Yang 1 (YY1) core element) increases CFTR expression significantly. Electrophoretic mobility shift assays indicate that the -102 site is located in a region of multiple DNA-protein interactions and that the -102A allele recruits specifically an additional nuclear protein related to YY1. The finding that the YY1-binding allele causes a significant increase in CFTR expression in vitro may allow a better understanding of the milder phenotype observed in patients who carry a severe CF mutation within the same gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号